Parton Distributions from simultaneous global QCD analyses Carlota Andrés Jefferson Lab

> In collaboration with: J.J. Ethier, W. Melnitchouk, N. Sato, and Yiyu Zhou

Motivation

- Traditionally different types of collinear distributions (PDFs, FFs) are obtained from independent analyses.
- Performing simultaneous fits of different collinear distributions allows us to:
 - Study the limits in x and Q^2 of collinear factorization
 - Test the universality of PDFs, FFs...
 - Extract the distributions in a rigorous way where all the data are studied using the **same** theoretical framework
- In this talk: (first) simultaneous analysis of unpolarized PDFs and
 FFs ----> Strange quark distribution

JAM17

Ethier, Sato, Melnitchouk: Phys. Rev. Lett. 119, 132001 (2017)

- First (simultaneous) MC analysis of polarized PDFs and FFs
- Polarized SIDIS, polarized DIS, and SIA data included

Evolution of JAM

Evolution of JAM

First simultaneous analysis of unpolarized PDFs and FFs

Evolution of JAM

First **simultaneous** analysis of **unpolarized** PDFs and FFs Why JAM19? To study the **strange** quark distribution

Motivation II

- The strange PDF is less known than the non-strange light flavors
- Traditionally: neutrino-(heavy) nucleus DIS data used to extract the strange PDF.
 - Drawbacks: nuclear effects on PDFs.
- W and Z inclusive production in p-p collisions also sensitive to flavor separation
 - Drawbacks: tension between CMS and ATLAS results?

Motivation II

Setup: data

DIS : $l + (p, d) \rightarrow l' + X$ DY : $l + (p, d) \rightarrow l\bar{l} + X$ SIDIS : $l + d \rightarrow l' + h + X$ $W^2 > 10 \,\mathrm{GeV^2}$

$$Q^2 > m_c^2$$

SIA : $e^+ + e^- \rightarrow h + X$

Carlota Andrés

Setup: theory

- All observables computed at NLO in pQCD
- DGLAP truncated evolution at order α_s in Mellin space
- DIS/SIDIS/SIA cross sections computed at leading twist
- Nuclear smearing for deuterium DIS
- Heavy quark treatment : ZM-VFN
- Fitting methodology:
 - MC (multi-steps), k-means clustering, extended reduced χ^2

Why MC?

• Typical PDF parametrization:

$$\chi^{2} = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(D_{i}^{e} - T_{i})^{2}}{(\sigma_{i}^{e})^{2}}$$

 $x\Delta f(x) = Nx^a(1-x)^b(1+c\sqrt{x}+dx)$

- Perform single x²-fit: → Multiple local minima!
 Parameters difficult to constrain
 Hessian method for uncertainties → Introduces tolerance criteria
 Unsuitable for simultaneous analysis of collinear distributions
- Monte Carlo methods:
 - Allow efficient exploration of the parameter space
 - Uncertainties directly obtained from MC replicas

JAM19 methodology

JAM19: multi-step fitting

PDFs

X

+ DIS data

Carlota Andrés

JAM19: multi-step fitting

PDFs

 ${\mathcal X}$

+ DIS data + DIS + DY data

JAM19: multi-step fitting PDFs PION FF

 ${\mathcal X}$

+ DIS data
+ DIS + DY data

Strong QCD

JAM19: multi-step fitting PDFs PION FF KAON FF

 ${\mathcal X}$

Z

Strong QCD

+ DIS data
+ SIA pion data
+ SIA kaon data
+ DIS + DY data

JAM19: multi-step fitting **PION FF PDFs KAON FF**

X

+ DIS data + SIA pion data + SIDIS pion data + DIS + DY data + SIDIS data

+ SIA kaon data + SIDIS kaon data

Strong QCD

X

X

Carlota Andrés

X

X

Carlota Andrés

Strong QCD

k-means clustering E.g. $f(x) = x^{\alpha} (1 - x)^{\beta}$

Strong QCD

+ DIS data

+ DIS + DY data

+ SIDIS data

+ DIS data

+ DIS + DY data

+ SIDIS data

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

PDFs

X

+ DIS data

 $R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$

PDFs

X

+ DIS data

PDFs

Carlota Andrés

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

PDFs

X

+ DIS data+ DY data

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

PDFs

X

+ DIS data+ DY data

PDFs

Strong QCD

Constraints on R_s

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

PDFs

X

+ DIS data + DY data + SIA + SIDIS data

Carlota Andrés
Constraints on R_s

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

PDFs

X

+ DIS data + DY data + SIA + SIDIS data

SIA K+/K- data

Z

Z

SIA K+/K- data

Z

Z

SIA K+/K- data

Z

JAM19: Selection criteria

• Apply k-means clustering

 Classify clusters by increasing order in 'extended' reduced χ

$$\frac{\chi^2}{N_{\text{tot}}} + \sum_{exp} \frac{\chi^2_{exp}}{N_{exp}}$$

Perform a new sampling with flat priors around the best cluster

PDF results

JAM19 PDFs

arXiv:1905.03788 [hep-ph]

Carlota Andrés

Strong QCD

JAM19 PDFs

arXiv:1905.03788 [hep-ph]

Carlota Andrés

Strong QCD

JAM19 PDFs

arXiv:1905.03788 [hep-ph]

JAM19 PDFs

arXiv:1905.03788 [hep-ph]

FF results

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph]

$Q = m_c$

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph]

Strong QCD

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph]

 $Q = m_c$

arXiv:1905.03788 [hep-ph] $zD_g^{\pi^+}$ $zD_{*+}^{\pi^+}$ JAM19 .2 CIDIC $zD_g^{\pi^+}$ ---- DSS ······ HKNS 0.8 $zD_g^{K^+}$ 0.4 $zD_{u^+}^{K^+}$ 0.4 0.3 0.20.1 $zD_{d^+}^{K^+}$ 0.4 $zD_{s^+}^{K^+}$ 0.3 0.2 0.1 $0_{0.2}$ $oldsymbol{z}$ $\overline{^{0.2}}$ 0.6 0.8 0.8 0.4 0.60.4 \boldsymbol{z} Constraints on

 $Q = m_c$

Ζ

Strong QCD

 $g \rightarrow \pi^+$

Impact of SIDIS data

Impact of SIDIS data on PDFs

Impact of SIDIS data on PDFs

Impact of SIDIS data on PDFs

Strong strange suppression

Strong QCD

Impact of SIDIS data on FFs

 $Q = m_c$

Impact of SIDIS data on FFs

Impact of SIDIS data on FFs

 MC statistical methods are important for a robust extraction of nonperturbative collinear distributions

Crucial for future global TMDs, GPDs analysis

- First MC fit of PDFs and FFs using DIS, DY, SIDIS and SIA data
- JAM19 methodology: MC (multi-steps), k-means clustering, 'extended' reduced χ^2
- Strange PDF strongly suppressed

The way forward

The way forward

Yiyu Zhou

Thanks

Backup

JAM17: motivation Spin sum rule $\Delta\Sigma(Q^2) = \int_0^1 dx \left(\Delta u^+(x,Q^2) + \Delta d^+(x,Q^2) + \Delta s^+(x,Q^2)\right)$ $\Delta G(Q^2) = \int_0^1 dx \Delta g(x, Q^2)$ $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

 $\Delta \Sigma (Q_{\rm EMC}^2) \sim 0.1$

First moment of polarized structure function g_1 :

$$\int_{0}^{1} dx g_{1}^{p}(x, Q^{2}) = \frac{1}{36} \left[8\Delta\Sigma + 3g_{A} + a_{8} \right] \left(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2}) \right) + \mathcal{O}(\frac{1}{Q^{2}})$$

 \rightarrow DIS requires assumptions about triplet and octet axial charges to extract $\Delta\Sigma$

• Assuming exact $SU(2)_f$ and $SU(3)_f$ values from weak baryon decays $\int dx \left(\Delta u^{+} - \Delta d^{+}\right) = g_A \sim 1.269 \qquad \int dx \left(\Delta u^{+} + \Delta d^{+} - 2\Delta s^{+}\right) = a_8 \sim 0.586$ $\Delta \Sigma_{[10^{-3}, 0.8]} \sim 0.3 \qquad \text{Released in JAM17}$ Released in JAM17

JAM17: Polarized PDFs

- Isoscalar sea distribution consistent with zero
- Isovector sea slightly prefers positive shape at low *x*
 - \rightarrow Non-zero asymmetry given by small contributions from SIDIS asymmetries

- Δu^+ consistent with previous analysis
- Δd^+ slightly larger in magnitude
 - → Anti-correlation with Δs^+ , which is less negative than JAM15 at $x \sim 0.2$

Strong QCD

JAM17: Lowest moments

• Need better determination of Δs^+ moment to reduce a_8 uncertainty!

$$\Delta s^+ = -0.03 \pm 0.09$$

 $\Delta \Sigma = 0.36 \pm 0.09$

Strong QCD

Chi2

 $\hat{}$

Reaction	$N_{\rm dat}$	χ^2	$\chi^2/N_{\rm dat}$	Reaction	$N_{\rm dat}$	χ^2	$\chi^2/N_{\rm dat}$
SIDIS	992	1243.12	1.25	SIDIS (π^{\pm})	498	585.48	1.18
SIA	444	562.80	1.27	$\operatorname{SIDIS}(K^{\pm})$	494	657.64	1.33
DIS	2680	3437.96	1.28	$SIA(\pi^{\pm})$	231	247.27	1.07
DY	250	416.29	1.67	SIA (K^{\pm})	213	315.53	1.48

Experiment	target	hadron	$N_{\rm dat}$	$\chi^2/N_{ m dat}$
COMPASS	d	π^+	249	1.26
COMPASS	d	π^{-}	249	1.09
COMPASS	d	K^+	247	1.24
COMPASS	d	K^{-}	247	1.43

SIDIS K- data

Z

SIDIS K- data

Z

SIDIS K- data

Z

SIDIS K+ data

Z

SIDIS K+ data

Z

 \boldsymbol{Z}

