Strong QCD from Hadron Structure Experiments 2019

November 05 - 09, 2019, Newport News, VA

Experimental access to baryon-to-meson transition distribution amplitudes: A new window to the 3 dimensional nucleon structure

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Outline

- Introduction to TDAs and comparison to GPDs
- Theoretical modelling and features of the TDA based desciption
- Experimental access to TDAs at JLAB (CLAS and HALL C)
- Perspectives for the experimental access to TDAs with PANDA at FAIR and at JPARC
- Summary and Outlook

Theory collaborators: B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky

Physics motivation

GPDs

- → Light-cone matrix elements of non-local bilinear quark and gluon operators
- ➔ Describe hadronic structural information in terms of quark and gluon degrees of freedom
- Spin-dependent 2D transverse coordinate space
 + 1D longitudinal momentum space images of the nucleon
 - ➔ Tool to study the nature and origin of the nucleon spin
 - ➔ Impact parameter space: spatial femto-photographs of the hadron structure in the transverse plane

of Z

Physics motivation

Baryon to meson TDAs

- → Light-cone matrix elements of non-local three quark operators
- → Encoded physical picture close to GPDs
- Probe partonic correlations between states of different baryonic charge
 - Access to non-minimal Fock components of baryon light-cone wave functions

- → <u>Impact parameter space</u>: Femto-photography of hadrons from a new perspective
 - ➔ Spatial imaging of the structure of the pion cloud inside the nucleon

Theoretical modelling of TDAs

GPDs: Description in the skewness $\xi = 0$ limit

- **TDAs:** The soft pion theorems fixe the $\xi \rightarrow 1$ limit in terms of nucleon DAs and thus provides the overall magnitude of TDAs
 - → A factorized Ansatz with input at ξ = 1 designed in

J.P. Lansberg, B. Pire, K. Semenov and L. Szymanowski (2012)

➔ Provides the unpolarized cross section for hard leptoproduction of a pion off nucleon:

$$\frac{d^{5}\sigma}{dE'd\Omega_{e'}d\Omega_{\pi}} = \Gamma \times \frac{\Lambda\left(s, m^{2}, M^{2}\right)}{128\pi^{2}s\left(s - M^{2}\right)} \times \sum_{s_{1}, s_{2}} \left\{ \frac{1}{2} \left(\left| \mathcal{M}_{s_{1}s_{2}}^{1} \right|^{2} + \left| \mathcal{M}_{s_{1}s_{2}}^{-1} \right|^{2} \right) + \ldots \right\} = \Gamma \times \left(\frac{d^{2}\sigma_{T}}{d\Omega_{\pi}} + \ldots \right)$$

$$N\gamma^{*} \to \pi N \text{ helicity amplitudes}$$

→ Polartized terms:

Need dominant leading twist transverse amplitude

+ next-to-leading twist subdominant longitudinal amplitude (twist-4 nucleon DAs or twist-4 nucleon-to-pion TDAs)

Experimental acessible features of the TDA based mechanism

Characteristic features of the TDA-based mechanism:

- → Dominance of the transverse polarisation of the virtual photon leads to a suppression of the longitudinal cross section σ_L at large Q² by at least a factor 1/Q²
- The transverse cross section σ_T shows a charakteristic 1/Q⁸ scaling behaviour for fixed x_B

More distinguishing features become accesible with a polarized target:

- \rightarrow Transverse target single spin asymmetry ~ *Im* part of the amplitude
- → TDA approach predicts a non vanishing and Q²-independent TSA
- → Two component TDA model predicts 10-15 % TSA for $\gamma^* N \rightarrow \pi N$

Backward π electroproduction with CLAS at JLAB

- CLAS (e16 + e1f run period)
- 5.5, 5.75 GeV longitudinally polarized electron beam
- unpolarized hydrogen target
- Electron ID based on electromagnetic calorimeter and Cherenkov counters
- **π ID** based on a maximum likelyhood
 particle selection from TOF based
 β vs p correlation

Hard exclusive π^+ electroproduction cross section in the backward direction

K. Park, M. Guidal et al. PL B 780, 340 (2018)

Variable	Number of bins	Range	Bin size
W	1	2.0-2.4 GeV	400 MeV
Q ²	6	$1.6-4.5 \text{ GeV}^2$	varying
Δ_T^2	1	0–0.5 GeV ²	0.5 GeV^2
$arphi^*_\pi$	9	0° –360 $^{\circ}$	40°

Strong QCD workshop, Newport News, VA

Hard exclusive π^+ electroproduction

K. Park, M. Guidal et al. PL B 780, 340 (2019)

$$\frac{d\sigma}{d\Omega_{\pi}^{*}} = A + B\cos\varphi_{\pi}^{*} + C\cos 2\varphi_{\pi}^{*}$$
$$A = \sigma_{T} + \epsilon\sigma_{L} \quad B = \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}$$
$$C = \epsilon\sigma_{TT}$$

TDA model calculations for σ_{U} :

- → Results depend on the input for the nucleon distribution aplitude
- dark blue (COZ): V.L. Chernyak et al., Z. Phys. C 42, 583 (1989)
- light blue (KS): I.D. King, C.T. Sachrajda, Nucl. Phys. B 279, 785 (1987)
- red: NNLO calculation: A. Lenz et al., Phys. Rev. D 79, 093007 (2009)

Hard exclusive π^+ electroproduction beam spin asymmetry

<u>Cross section</u> (longitudinally pol. beam and unpol. target):

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos(2\phi)} \cos(2\phi) + A_{UU}^{\cos(\phi)} \cos(\phi) + h A_{LU}^{\sin(\phi)} \sin(\phi))$$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

Kinematic coverage and exclusivity cuts

Beam spin asymmetry

$$BSA_i = \frac{1}{P_e} \cdot \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-} \qquad \begin{array}{c} \mathsf{P}_e = \mathsf{75~\%: average e} \text{-} \text{ beam} \\ \text{polarisation} \end{array}$$

Integrated over all kinematic variables in forward / backward region:

BSA for different -t bins

χ² / ndf

 χ^2 / ndf

p0

p0

df 15.57 / 11 0.09353 ± 0.005818

¢ [°]

ື (°]

df 3.817 / 11 -0.03933 ± 0.01594

-t dependence of $A_{LU}^{\sin(\phi)}$

-t dependence of $A_{LU}^{\sin(\phi)}$

\mathbf{Q}^{2} and $\mathbf{x}_{\mathbf{B}}$ dependence of $A_{LU}^{\sin(\phi)}$

BSA is a subleading twist effect both in the forward and backward regimes

Perspectives for CLAS12

• CLAS 12 can map out froward and backward kinematics for

RG-A: $ep \rightarrow e' p \pi^0$ $ep \rightarrow e' n \pi^+$ $ep \rightarrow e' p \omega$ **RG-B:** $en \rightarrow e' p \pi^-$

➔ A significant amount of data has already been recorded and is currently in the analysis phase

Example: Kinematic coverage of $ep \rightarrow e' \pi^+(n)$

Stefan Diehl, JLU + UCONN

Strong QCD workshop, Newport News, VA

Backward $\boldsymbol{\omega}$ production at JLAB Hall C

Analysis by: W. B. Li, G. Huber *et al.* (Jefferson Lab F_{π} collaboration) Phys. Rev. Lett. 123, 182501 (2019)

JLAB Hall C: 2.6 - 5.2 GeV electron beam on a liquid hydrogen target

 Recoil protons and scattered electrons detected with the hall C high precision particle spectrometers

Backward ω production at JLAB Hall C

$$2\pi \frac{d^2\sigma}{dtd\phi} = \frac{d\sigma_{\rm T}}{dt} + \epsilon \frac{d\sigma_{\rm L}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{\rm LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos 2\phi$$

→ Full Rosenbluth separation to extract σ_{T} and σ_{L}

Backward ω production at JLAB Hall C

Combined (CLAS and $F_{\pi-2}$ data for $\gamma^* p \rightarrow \omega p$)

TDA-based predictions vs the Regge-based J.M. Laget's (JML18) model

- Antiproton beam
- cluster jet / pellet target
 (pp, pA)
- $E_{ar{p}} \leq 15 \,\, {
 m GeV}$ $W^2 \leq 30 \,\, {
 m GeV}^2$

 $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

TDAs also occur in factorized description of:

 W^2

 $p_{\bar{N}}$

 $p_{\mathcal{M}}$

$$\bar{N} + N \rightarrow \gamma^{*}(q) + \pi \rightarrow \ell^{+} + \ell^{-} + \pi;$$

$$\bar{N} + N \rightarrow J/\psi + \pi \rightarrow \ell^{+} + \ell^{-} + \pi;$$
Theory: J.P. Lansberg et al. (2012)
B. Pire, L. Szymanowski,
K. Semenov-Tian-Shansky (2013)
Two regimes: forward and backward

$$\int_{P(q)}^{P(q)} \int_{P(q)}^{P(q)} \int_{P(q)}^{P(q)}$$

 p_N

CF

MNTD

21

 W^2

CF'

MNTDA

 $p_{\mathcal{M}}$

 $\bar{p}p \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 \ell^+ \ell^-$ cross section estimates for **PANDA**

Integrated cross section for different inputs of the nucleon DAs:

B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky (2013)

• Cross section of \overline{p} n $\rightarrow \pi^{-}$ l⁺ l⁻ is larger by a factor 2 (neutron target required)

Several feasability studies:

M. C. Mora Espi, M. Zambrana, F. Maas (PANDA collaboration) (2015) B. Ramstein, E. Atomssa (PANDA collaboration) PRD 95 (2017)

Feasibility study for the measurement of πN TDAs at $\overline{P}ANDA$ in $\bar{p}p \rightarrow J/\psi\pi^0$

B. Singh,¹ W. Erni,² B. Krusche,² M. Steinacher,² N. Walford,² H. Liu,³ Z. Liu,³ B. Liu,³ X. Shen,³ C. Wang,³ J. Zhao,³ M. Albrecht,⁴ T. Erlen,⁴ M. Fink,⁴ F.H. Heinsius,⁴ T. Held,⁴ T. Holtmann,⁴ S. Jasper,⁴ I. Keshk,⁴ H. Koch,⁴ B. Kopf,⁴ M. Kuhlmann,⁴ M. Kümmel,⁴ S. Leiber,⁴ M. Mikirtychyants,⁴ P. Musiol,⁴ A. Mustafa,⁴ M. Pelizäus,⁴ J. Pychy,⁴ M. Richter,⁴ C. Schnier,⁴ T. Schröder,⁴ C. Sowa,⁴ M. Steinke,⁴ T. Triffterer,⁴ U. Wiedner,⁴ M. Ball,⁵ R. Beck,⁵ C. Hammann,⁵ B. Ketzer,⁵ K. Biguenko,²³ K.T. Brinkmann,²³ V. Di Pietro,²³ S. Diehl,²³ V. Dormenev,²³ P. Drexler,²³ M. Düren,²³ E. Etzelmüller,²³

Event generator based on: B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky (2013)

Study of: $\overline{p} p \rightarrow J/\Psi \pi^0$ (signal)

and different background sources ($\overline{p} p \rightarrow \pi^+ \pi^- \pi^0, \overline{p} p \rightarrow J/\Psi \pi^0 \pi^0, ...$)

- Simulations for s = 5 GeV², 10 GeV², 12.2 GeV², 16.9 GeV², 24.3 GeV²
- <u>Assumption</u>: 2 fb⁻¹ of integrated luminosity (~ 5 month of high lumi. data taking)

- Signal and background count rates for 2 fb⁻¹ (~ 5 months in High Luminosity mode)
 Worst case scenario at p_p = 5.5 GeV/c: S/B at least factor 10.
- Stefan Diehl, JLU + UCONN

Baryon to Meson TDA measuremets at JPARC

J-PARC: intense pion beams with $P_{\pi} = 10 - 20 \text{ GeV}$

- Charmonium production in assoziation with a nucelon can be used to access TDAs
- Theory: B. Pire, L. Szymanowski and K. Semenov-Tian-Shansky, PRD 95 (2017)

Summary and Outlook

- Nucleon-to-meson TDAs provide new information about correlations of partons inside hadrons
- In the impact parameter space, TDAs provide a spatial imaging of the structure of the pion cloud inside the nucleon
- JLAB 6 GeV data provided first hints for the validity of the TDA based description
- The BSA of the hard exclusive π⁺ production shows a clear sign change from forward to backward angles, which may indicate a transition from the GPD to the TDA regime.
- JLAB 12 GeV data will provide more detailed measuremnts in the TDA regime.
- PANDA will allow a check of the universality of TDAs.

