Towards a combined analysis of inclusive/exclusive electroproduction

Astrid N. Hiller Blin

in collaboration with

Mainz Institute for Nuclear Physics

and Hall B Phys. Rev. C100 (2019) 035201 arXiv:1904.08016 [hep-ph]

STRONG QCD FROM HADRON STRUCTURE EXPERIMENTS 2019

2019-11-08

Nucleon excitation structure

Strong QCD 2019 2 A. N. Hiller Blin 2019-11-08

Nucleon excitation structure

Inclusive and exclusive reactions: can we use one for the other?

Results of resonant contributions to inclusive observables

Non-resonant piece: low and high energies communicate

Results of combined description (preliminary)

Inclusive and exclusive reactions: can we use one for the other?

Results of resonant contributions to inclusive observables

Non-resonant piece: low and high energies communicate

Results of combined description (preliminary)

Inclusive electron scattering

 $F_1 \propto \sigma_T(W, Q^2)$ $F_2 \propto \sigma_T(W, Q^2) + \sigma_L(W, Q^2)$ $\sigma_U(W, Q^2) = \sigma_T(W, Q^2) + \epsilon_T \sigma_L(W, Q^2)$

- Gives access to structure functions
- Here: unpolarized structure functions

Inclusive electron scattering

 $F_{1} \propto \sigma_{T}(W, Q^{2})$ $F_{2} \propto \sigma_{T}(W, Q^{2}) + \sigma_{L}(W, Q^{2})$ $\sigma_{U}(W, Q^{2}) = \sigma_{T}(W, Q^{2}) + \epsilon_{T}\sigma_{L}(W, Q^{2})$

- Gives access to structure functions
- Here: unpolarized structure functions

- Related to forward virtual Compton scattering (VVCS) amplitudes T₁ and T₂
- Information about hadronic contribution to muonic hydrogen Lamb shift!

Inclusive data and models on the market

- At low energies: precise CLAS data Well covered up to 3rd resonance regime: towards parton distributions at large x
- CLAS12 is to reach $0.05 \text{ GeV}^2 < Q^2 < 12 \text{ GeV}^2$, W up to 4 GeV

Inclusive data and models on the market

- At high energies: HERA and ZEUS data Extremely good Q² coverage at low x
- Goal: combining high and low-energy models
- Description of observables integrated over x: Cottingham formula, subtraction function in VVCS, Lamb shift, ...
- Tests on quark-hadron duality A. N. Hiller Blin

At low energies: precise CLAS data Well covered up to 3rd resonance regime: towards parton distributions at large x

CLAS12 is to reach 0.05 GeV² < Q² < 12 GeV², W up to 4 GeV

Exclusive electron scattering

Exclusive electron scattering

- Longitudinal and transverse electrocouplings
- Allows us to determine each of the resonant contributions separately
- Good world data on some of the main resonances; CLAS data up to 3rd resonance region (and soon full resonance region coverage with CLAS12)

From exclusive to inclusive electron scattering

$$\sigma_{T,L}(W,Q^2) = \sigma_{T,L}^R(W,Q^2) + \sigma_{T,L}^{NR}(W,Q^2)$$

From exclusive to inclusive electron scattering

$$\sigma_{T,L}(W,Q^2) = \sigma_{T,L}^R(W,Q^2) + \sigma_{T,L}^{NR}(W,Q^2)$$

From exclusive to inclusive electron scattering

$$\sigma_{T,L}(W,Q^2) = \sigma_{T,L}^R(W,Q^2) + \sigma_{T,L}^{NR}(W,Q^2)$$

Electrocouplings from data

How electrocouplings enter inclusive data

 $Q^2 = 1 \text{ GeV}^2$

How electrocouplings enter inclusive data

How electrocouplings enter inclusive data

Further electrocoupling data examples

https://userweb.jlab.org/~mokeev/resonance_electrocouplings/

- Interpolation/extrapolation functions: https://userweb.jlab.org/~isupov/couplings/ in good agreement with world data and preliminary CLAS12 results at higher Q²
- Error bands estimated from data uncertainties and scaled with coupling size in extrapolation region

Inclusive and exclusive reactions: can we use one for the other?

Results of resonant contributions to inclusive observables

Non-resonant piece: low and high energies communicate

Results of combined description (preliminary)

Resonant contributions at different Q²

Resonant contributions at different Q²

¹²

Inclusive unpolarized cross sections $Q^2 = 2 \text{ GeV}^2$

Inclusive unpolarized cross sections $Q^2 = 2 \text{ GeV}^2$

Inclusive unpolarized cross sections $Q^2 = 2 \text{ GeV}^2$

Inclusive and exclusive reactions: can we use one for the other?

Results of resonant contributions to inclusive observables

Non-resonant piece: low and high energies communicate

Results of combined description (preliminary)

First estimates of non-resonant contribution

Continuation to high energies

Continuation to high energies

Continuation to high energies

High and low energies: previous works

- Excellent description of data at low and high energies, separately
- At low Q²: high- and low-energy theories compatible in overlap region
- At slightly higher Q²: huge gap between high and low-energy models
- Leads to difficulties in extracting observables integrated over x (or energies)

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)}$$

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)}$$

• Automatically recovers Regge behaviour at high energies for $\alpha_i < 1$

$$F_1(\nu, Q^2) \longrightarrow \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2) \nu^{\alpha_i}$$

• For the Pomerons we have the requirement

$$b_i(Q^2) = a_i(Q^2) + \alpha_i, \quad 1 \le \alpha_i < 2$$

 Implements threshold and resonant behaviour

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)}$$

• Automatically recovers Regge behaviour at high energies for $\alpha_i < 1$

$$F_1(\nu, Q^2) \longrightarrow \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2) \nu^{\alpha_i}$$

• For the Pomerons we have the requirement

$$b_i(Q^2) = a_i(Q^2) + \alpha_i, \quad 1 \le \alpha_i < 2$$

 Implements threshold and resonant behaviour

Last and definitely not least: obeys dispersion relations!

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 - \frac{\nu_{\text{thr}}$$

• Automatically recovers Regge behaviour at high energies for $\alpha_i < 1$

$$F_1(\nu, Q^2) \longrightarrow \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2) \nu^{\alpha_i}$$

• For the Pomerons we have the requirement

A. N. Hiller Blin

Photoproduction σ_{T}

$$b_i(Q^2) = a_i(Q^2) + \alpha_i, \quad 1 \le \alpha_i < 2$$

 Implements threshold and resonant behaviour

Last and definitely not least: obeys dispersion relations!

VVCS amplitude T₁ obeys once-subtracted dispersion relation

$$\Re T_1(\nu, Q^2) = \frac{2\alpha\nu^2}{\pi M} \int_{\nu_0}^{\infty} d\nu' \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu^2)}$$

VVCS amplitude T₁ obeys once-subtracted dispersion relation

$$\Re T_{1}(\nu, Q^{2}) = \frac{2\alpha\nu^{2}}{\pi M} \int_{\nu_{0}}^{\infty} d\nu' \frac{F_{1}(\nu', Q^{2})}{\nu'(\nu'^{2} - \nu^{2})} \propto \Im T_{1}(\nu, Q^{2})$$

VVCS amplitude T₁ obeys once-subtracted dispersion relation

$$\Re T_1(\nu, Q^2) = \bar{T}_1(0, Q^2) + \frac{2\alpha\nu^2}{\pi M} \int_{\nu_0}^{\infty} d\nu' \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu^2)} \sum_{\propto \Im T_1(\nu, Q^2)}$$

VVCS amplitude T₁ obeys once-subtracted dispersion relation

$$\Re T_1(\nu, Q^2) = \bar{T}_1(0, Q^2) + \frac{2\alpha\nu^2}{\pi M} \int_{\nu_0}^{\infty} d\nu' \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu^2)} \sum_{\propto \Im T_1(\nu, Q^2)}$$

Our formalism will allow the phenomenological determination of the subtraction contribution to the hydrogen Lamb shift for the first time!

$$\Delta E^{\text{subtr.}}(nS) = \frac{2e^2 m \phi_n^2}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{v_l + 2}{(1 + v_l)^2} \bar{T}_1(0, Q^2)$$

VVCS amplitude T₁ obeys once-subtracted dispersion relation

$$\Re T_1(\nu, Q^2) = \bar{T}_1(0, Q^2) + \frac{2\alpha\nu^2}{\pi M} \int_{\nu_0}^{\infty} d\nu' \frac{F_1(\nu', Q^2)}{\nu'(\nu'^2 - \nu^2)} \sum_{\propto \Im T_1(\nu, Q^2)}$$

Our formalism will allow the phenomenological determination of the subtraction contribution to the hydrogen Lamb shift for the first time!

$$\Delta E^{\text{subtr.}}(nS) = \frac{2e^2 m \phi_n^2}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \frac{v_l + 2}{(1 + v_l)^2} \bar{T}_1(0, Q^2)$$

Source of the largest uncertainty of hadronic contribution to Lamb shift relevant to improve muonic spectroscopy in proton charge radius extraction

Birse and Govern, EPJ A 48 (2012) 120

Alarcón et al., EPJ C 74 (2014) 2852

Tomalak and Vanderhaeghen, EPJ C 76 (2016) 125

Fit constraints

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)}$$

Fit constraints

$$F_1(\nu, Q^2) = F_1^{\text{res}}(\nu, Q^2) + \sum_{i=0}^2 \gamma_{\alpha_i}(Q^2)(\nu - \nu_{\text{thr}})^{\alpha_i} \left(1 - \frac{\nu_{\text{thr}}}{\nu}\right)^{a_i(Q^2)} \left(1 + \frac{\nu_{\text{thr}}}{\nu}\right)^{b_i(Q^2)}$$

 F1 ~ imaginary part of T1: additional constraints obtained by imposing for subtraction function

$\overline{\mathbf{T}}_1(\mathbf{0},\mathbf{0}) = \mathbf{0}$

and using the experimental value of the magnetic polarizability:

$$\beta_{M1} = \frac{\mathrm{d}}{\mathrm{d}Q^2} \overline{T}_1(0, Q^2) \bigg|_{Q^2 = 0}$$

• Constrains the fit parameter space even further

Inclusive and exclusive reactions: can we use one for the other?

Results of resonant contributions to inclusive observables

Non-resonant piece: low and high energies communicate

Results of combined description (preliminary)

Magnetic polarizability: our fit results

Structure functions at non-vanishing Q^2 $0.25 \le Q^2 < 0.3 \text{ GeV}^2$

W [GeV]

First combined model for low and high energies!

Summary

- New resonance model: **N* electrocouplings** from CLAS(12) allow to describe the **resonant contributions** to inclusive electron-scattering
- Intricate behaviour with W and Q² in the resonance regime
- First estimates for the non-resonant behaviour

Summary

- New resonance model: **N* electrocouplings** from CLAS(12) allow to describe the **resonant contributions** to inclusive electron-scattering
- Intricate behaviour with W and Q² in the resonance regime
- First estimates for the non-resonant behaviour

Work in progress

- Analytical transition between low and high x (or energies): important for VVCS subtraction function
- First phenomenological determination of subtraction contribution to Lamb shift
- Updates on inclusive and exclusive electron scattering CLAS12: coming soon!

Backup

Further electrocoupling data examples

New resonance

Subtraction function calculation

$$\bar{T}_1(0,Q^2) = T_1^{\text{NR}}(0,Q^2) + \frac{\alpha}{M} F_D^2(Q^2) + \frac{2\alpha}{M} \int_{\nu_0}^{\infty} d\nu \frac{F_1^{\text{R}}(\nu,Q^2)}{\nu}$$