The 1D Meson and Ground Baryon Structure from JLab Experiments

Tanja Horn

Hadron Structure from Strong QCD Workshop

Jefferson Lab, USA, 5-9 November 2019

Electromagnetic Form Factors

- □ Fundamental properties of mesons (pion, kaon,...), and nucleons
 - Contain information on charge, magnetization distributions
 - Connect to distributions, dynamics of quarks in hadrons

The pion is the lightest QCD quark system and also has a central role in our understanding of the dynamic generation of mass - kaon is the next simplest system containing strangeness

- Recent advances and future prospects
 - Dramatically improved precision of measurements
- □ Implications of new results
 - New information on basic hadron structure and dynamic generation of light hadron mass
 - Advances other programs relying on the same or similar experimental techniques
 - Validation of the reaction mechanism for GPD studies
 - Meson structure (PDF) measurements

Unpolarized elastic e-N Scattering

- $\succ G_M$ if $\tau \ll 1$ $\tau = \frac{Q^2}{4M^2}$
- $\succ G_E$ if $\tau \gg 1$
- In particular, maximum contribution of G_E² term to the cross section vanishes at large Q²

Proton Form Factor Rosenbluth Data

 G_E^p and G_M^p Rosenbluth data: $G_E^p \approx \frac{1}{\mu} G_M^p \approx G_D$

\Box Elastic e-p cross sections have been measured for 0.003 \leq Q² \leq 31.2 GeV²

Rosenbluth data are qualitatively described by the dipole form factor, the Fourier transform of a spherically symmetric, exponentially decreasing radial density

Alternate Technique: Polarization Transfer in Elastic e-N Scattering

$$P_{t} = -P_{beam} \sqrt{\frac{2\epsilon(1-\epsilon)}{\tau}} \frac{r}{1+\frac{\epsilon}{\tau}r^{2}}$$

$$P_{\ell} = P_{beam} \frac{\sqrt{1-\epsilon^{2}}}{1+\frac{\epsilon}{\tau}r^{2}}$$

$$P_{n} = 0$$

$$r \equiv \frac{G_{E}}{G_{M}}$$

$$= \mu_{p} \frac{G_{E}^{p}}{G_{M}^{p}} = -\mu_{p} \sqrt{\frac{\tau(1+\epsilon)}{2\epsilon}} \frac{P_{t}}{P_{\ell}}$$

Akhiezer and Rekalo (1968) derived relations between transferred polarization components in elastic e-N scattering and the ratio of EM FFs

□ The ratio of transferred polarization components is directly proportional to G_E/G_M and thus more sensitive to G_E at large Q² than the cross section method

Proton Electric Form Factor (2019)

GEp experiments have changed fundamental view on proton structure

Discrepancy remains to be fully understood

GEp-I

- > Jones et al., PRL 84 (2000)1398
- Punjabi et al., PRC 71 (2005) 055202

GEp-II

- Gayou et al., PRL 88 (2002) 092301
- > Puckett et al., PRC **85** (2012) 045203

GEp-III

- Puckett et al., PRL 104 (2010) 242301
- > Meziane et al., PRL 106 (2011) 132501
- > Puckett et al., PRC **96** (2017) 055203
- □ Low Q² data from JLab
 - > Ron et al., PRL **99** (2007) 202002
 - > Ron et al., PRC 84 (2011) 055204
 - Zhan et al., PLB 705 (2011) 59-64
 - Paolone et al., PRL 105 (2010) 072001

Insights: Transverse Densities

- Simple Picture: Fourier transform of the spatial distribution
 - Spatial distribution in Breit frame
 - Model dependent corrections in extracting rest frame distributions
- Model-independent relation between form factors and transverse spatial distribution
 - Impact parameter space densities in the infinite momentum frame derived from GPD-FF sum rules

$$ho_{ch}(b) = rac{1}{2\pi} \int Q dQ J_0(Qb) F_1(Q^2)$$

Polarized transverse charge densities

Carlson and Vanderhaeghen, PRL 100 (2008) 032004

 \rightarrow Also see M. Vanderhaeghen's talk at this workshop

Proton Magnetic Form Factor

□ Preliminary results from 2016

- JLab experiment E12-07-108
- Ran in Hall A used the two identical HRSs
- Cross section significant improvement in precision for Q² > 6 GeV²

 Further highlights discrepancy with polarization transfer data up to Q² > 9 GeV²

E12-07-108 spokespersons: B. Wojtsekhowski, J. Arrington, M. Christy, S. Gilad, V. Sulkosky

Reaching Higher Q²: The SBS Nucleon Form Factor Program

Meson Production and Form Factors

Theory

- Accessing the form factor through electroproduction
- Extraction of meson form factor from data
- Electroproduction formalism

Theory/Lattice/Global Fitting

Major progress on hadron structure calculations (also lattice and global fitting), e.g. large Q² behavior of meson form factor

Accessing meson form factors through the Sullivan Process

- Sullivan Process allows accessing effective targets not readily found in nature
- □ F_{π^+} at Q²>0.3 GeV² is measured using the "pion cloud" of the proton in exclusive pion electroproduction: $p(e,e'\pi^+)n L/T$ separations
- □ Select pion pole process: at small –*t* pole process dominates the longitudinal cross section, σ_L

□ Isolate σ_L - in the Born term model, F_{π}^2 appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

[In practice one uses a more sophisticated model]

L/T Separation Example

σ_L is isolated using the Rosenbluth separation technique

Measure the cross section at two beam energies and fixed W, Q², -t

> Simultaneous fit using the measured azimuthal angle (ϕ_{π}) allows for extracting L, T, LT, and TT

 Careful evaluation of the systematic uncertainties is important due to the 1/ε amplification in the σ_L extraction

Spectrometer acceptance, kinematics, and efficiencies

[Horn et al., PRL 97, (2006) 192001]

Experimental Considerations

The Sullivan process can provide reliable access to a meson target as t becomes space-like if the pole associated with the ground-state meson is the dominant feature of the process and the structure of the (off-shell) meson evolves slowly and smoothly with virtuality.

□ Recent theoretical calculations found that for -t ≤ 0.6 GeV², changes in pion structure do evolve slowly so that a well-constrained experimental analysis should be reliable, and the Sullivan processes can provide a valid pion target.

□ Also progress with elastic form factors – experimental validation

Experimental Validation (Pion Form Factor example)

Experimental studies over the last decade have given more <u>confidence</u> in the electroproduction method yielding the physical pion form factor

Experimental studies include:

Check F $_{\pi}$ extraction for a range of t

- F_{π} values seem robust at larger -t (>0.2) – increased confidence in applicability of model to the kinematic regime of the data
- Verify that the pion pole diagram is the dominant contribution in the reaction mechanism
 - $R_{L} (= \sigma_{L}(\pi^{-})/\sigma_{L}(\pi^{+}))$ approaches the pion charge ratio, consistent with pion pole dominance
- Extract F_π at several values of t_{min} for fixed Q² (not shown here)

T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001

Pion Form Factor (2019)

[L. Chang, et al., PRL 111 (2013) 141802; PRL 110 (2013) 1322001]

Compared to one calculation here – there are others, e.g.Braun et al.

6 GeV Pion L/T and FF Program:

High precision pion FF data up to Q²~2.5 GeV²

- J. Volmer et al., PRL 86 (2001) 1713 305 citations
 - Precision F_{π} results between Q²=0.60 and \succ 1.60 GeV²
- T. Horn et al., PRL 97 (2006) 192001 236 citations
 - Precision F_{π} results at Q²=1.60 and 2.45 GeV² \geq
- V. Tadevosyan, et al., PRC75 (2007) 055205 200 ct's
 - G. Huber et al., PRC78 (2008) 045203 175 citations
 - Archival paper of precision F_{π} measurements 6 GeV \geq
- H. P. Blok et al., PRC78 (2008) 045202 101 citations
 - Archival paper of precision LT separated cross sections \geq
- T. Horn et al., PRC78 (2008) 058201 62 citations
 - L/T cross sections and F_{π} at Q²=2.15 GeV² ,exploratory at Q²~4.0 GeV²
- Plus several spin-off papers on, e.g. L/T separations in π^{-} and ω production, high-t, transverse charge density (2012-present) 15

Kaon Form Factor (2019)

M. Carmignotto et al., PRC 97 (2018) no. 2, 025204

- First Kaon FF extraction from JLab 6 GeV data
- Using techniques from pion analysis
- Here, comparison to DSE calculation

F. Gao et al., Phys. Rev. D 96 (**2017**) no. 3, 034024

Very limited data in region $Q^2 > 0.1 \text{ GeV}^2$

Exclusive Meson Experiments in Hall C @ 12 GeV

- CEBAF 10.9 GeV electron beam and SHMS small angle capability and controlled systematics are essential for extending precision measurements to higher Q²
- New SHMS fulfills the meson experiments
 L/T separation requirements
 - Small forward-angle capabilities
 - Good angular reproducibility
 - Missing mass resolution
- Dedicated key SHMS Particle Identification detectors for the experiments
 - Aerogel Cherenkov funded by NSF MRI (CUA)
 - Heavy gas Cherenkov partially funded by NSERC (U Regina)

PionLT (E12-19-006): Kinematic Reach

E12-19-006 spokespersons: T. Horn, G. Huber, D. Gaskell

PionLT experiment features:

- L/T separated cross sections at fixed x=0.3, 0.4, 0.55 up to Q²=8.5 GeV² – validate the reaction mechanism
- Pion form factor at Q² values up to 6 GeV²
- Enables pion form factor extraction at Q² =8.5 GeV², highest achievable at 12 GeV JLab

- L/T separated cross sections are a cornerstone of the JLab GPD program as they shed light on the mechanism that is most relevant for the reaction - PAC47
 - Both L and T may provide information on GPDs; if T is large, access to transversity GPDs could become possible.

KaonLT (E12-09-011): Opportunities with Kaons

Recent theoretical efforts to understand role of the strange quark

[P.T.P. Hutauruk et al., Phys. Rev. C 94 (2016) 035201]
[C. Chen et al., Phys. Rev. D 93 (2016) no. 7, 074021]
[S-S Xu et al., arXiv:1802.09552 (2018)]

Possib

E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz

- □ KaonLT experiment features:
 - L/T separated kaon cross sections at x=0.15, 0.25, 0.40 up to Q² =5.5 GeV²
 - First L/T separated kaon cross sections above W=2.2 GeV
 - > May enable F_{K} extraction up to Q²=5.5 GeV²

[T. Horn, C.D. Roberts, J. Phys. G43 (2016) no.7, 073001]

KaonLT: Completed data taking in 2018/2019

- Data taking completed end of Spring 2019 – in calibration phase of the analysis
- □ Physics analyses may include:
 - **K⁺ channel**: L/T separated Λ and \geq Σ^0 cross sections, Q⁻ⁿ dependence, coupling constants $g_{KN\Delta}$, beam helicity asymmetry, $\Lambda(1405)$, $\Lambda(1115), \Lambda(1520)$ cross sections
 - π^+ channel: L/T separated cross \succ sections, beam helicity asymmetry, n/Δ^0 ratios, Q⁻ⁿ dependence
 - **p** channel: $p(e,e'p)\rho/p(e,e'p)\omega$, \succ $p(e,e'p)\phi$ ratios, as possible, cross sections and p(e,e'p)n and p(e,e'p)η', Q⁻ⁿ dependence

Online data

Towards the Pion/Kaon Structure Function

The Sullivan process can provide reliable access to a meson target as t becomes space-like if the pole associated with the ground-state meson is the dominant feature of the process and the structure of the (off-shell) meson evolves slowly and smoothly with virtuality.

- □ Recent theoretical calculations found that for -t ≤ 0.6 GeV², changes in pion structure do evolve slowly so that a well-constrained experimental analysis should be reliable, and the Sullivan processes can provide a valid pion target.
- □ To check these conditions are satisfied empirically, one can take data covering a range in *t* and compare with phenomenological and theoretical expectations.

Global Fits: Pion and Kaon Structure Functions

- Significant reduction of uncertainties on sea quark and gluon distributions in the pion with inclusion of HERA leading neutron data
- Implications for "TDIS" (Tagged DIS) experiments at JLab

Pion Structure Function from Drell-Yan: Large x

JLab Hall A Tagged DIS (TDIS) Experiments

C12-**15**-006 **Pion** TDIS C12-**15**-006A **Kaon** TDIS

Scattered electron detection in new Super Bigbite Spectrometer (SBS)

mTPC inside superconducting solenoid

Projected JLab TDIS Results for π , K Structure Functions

Essentially no data currently

Large Opportunity for Meson Structure Functions at the EIC

Good Acceptance for TDIS-type Forward Physics! Low momentum nucleons <u>easier</u> to measure!

Example: acceptance for p' in e + p \rightarrow e' + p' + X

Huge gain in acceptance for forward tagging....

The incomplete Hadron: Mass Puzzle

"Mass without mass!"

 Proton: Mass ~ 940 MeV
 preliminary LQCD results on mass budget, or view as mass acquisition by DCSB

 Kaon: Mass ~ 490 MeV
 at a given scale, less gluons than in pion

 Pion: Mass ~ 140 MeV
 mass enigma – gluons vs Goldstone boson

The light quarks acquire (most of) their masses as effect of the gluon cloud.

The strange quark is at the boundary both emergent-mass and Higgs-mass generation mechanisms are important.

In the chiral limit, using a parton model basis: the entirety of the proton mass is produced by gluons and due to the trace anomaly

$$\langle P(p)|\Theta_0|P(p)\rangle = -p_\mu p_\mu = m_N^2$$

In the chiral limit, for the pion $(m_{\pi} = 0)$:

$$\langle \pi(q)|\Theta_0|\pi(q)\rangle = -q_\mu q_\mu = m_\pi^2 = 0$$

Sometimes interpreted as: in the chiral limit the gluons disappear and thus contribute nothing to the pion mass.

This is unlikely as quarks and gluons still dynamically acquire mass – this is a universal feature in hadrons – so more likely a cancellation of terms leads to "0"

Nonetheless: are there gluons at large Q² in the pion or not?

Key Experimental Efforts at an EIC

- Hadron masses in light quark systems
 - Pion and kaon parton distribution functions (PDFs) and generalized parton \geq distributions (GPDs)
- mas pion and Kaon A 55 (2019) 190 Reference on the online of the online Gluon (binding) energy in Nambu-Goldstone modes
 - \succ Open charm production from pion and kaon
- Mass acquisition from Dynamical Chiral
 - Pion and kaon form factors \geq
- Strong vs. Higgs mas
 - Valence quark dist

- Timelike analog of mass
 - Fragmentation of a quark into pions or kaons

Summary

- ID meson and ground state baryon structure measurements play an important role in our understanding of the structure and interactions of hadrons based on the principles of QCD
- Spin-dependent techniques provide important information on the proton (and neutron) form factors larger coverage and higher precision
- Meson form factors can be accessed through the Sullivan process
 - Technique validated experimentally much progress with theoretical calculations
 - \circ JLab12: Pion and kaon form factor extractions up to high Q² (~9 and ~6 GeV²)

- Opportunities to map meson structure functions through the Sullivan process
 - JLab TDIS experiments resolve large x issues
 - EIC: mapping pion and kaon structure functions over a large (x, Q²) landscape

Using a model to extract of F_{π} from σ_{L} JLab data

□ JLab 6 GeV F_{π} experiments used the VGL/Regge model as it has proven to give a reliable description of σ_{L} across a wide kinematic domain

[Vanderhaeghen, Guidal, Laget, PRC 57, (1998) 1454]

$$F_{\pi}(Q^2) = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit of σ_L to model gives F_{π} at each Q^2

□ Separated L/T cross sections will be published, so F_{π} can be extracted using other models as they become available,

e.g. R. J. Perry et al., Phys. Rev. C 100 (2019) no. 2, 025206

dơ/dt (µb/GeV² $Q^2 = 2.45$ $Q^2 = 1.60$ 6 •σ_L 2 σ 4 2 0 0.05 0.1 0.15 0.2 0.25 0.1 0.2 0.3 0.4 -t (GeV²) -t (GeV²)

[Horn et al., PRL 97, (2006) 192001]

$$\Lambda_{\pi}^2 = 0.513, \, 0.491 \, GeV^2$$

$$\Lambda_{\rho}^2 = 1.7 \ GeV^2$$

PionLT: Low energy kinematic run summer 2019

Completed 2 L/T separations at low Q² and took data for the low epsilon points for two more settings, which also required these beam energies

Two/three beam energies

Q² (GeV²)	Х _В	L/T complet e	Purpose
0.375	0.09	Yes	Form Factor
0.425	0.1	Yes	Form Factor
1.45	0.3	No	Reaction mechanism
2.12	0.4	No	Reaction mechanism

