Dilepton Production with High Momentum Meson Beams at J-PARC

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

Reimei Symposium on "Synergies in Hadron Physics between J-PARC and JLab" Jefferson Lab, November 5, 2019

Complementality between DIS and Drell-Yan

Both DIS and Drell-Yan process are tools to probe the quark and antiquark structure in hadrons (factorization, universality) Challenges and opportunities of dilepton experiments at J-PARC

- Challenges
 - Beam energies are relatively low (30-50 GeV proton, and secondary pion, kaon, antiproton at lower energies)
- Opportunities
 - Very few existing data at this energy region
 - Some novel hadron physics topics could be well studied at relatively low energies
 - Polarized beam/target offers new possibilities

$\overline{d} / \overline{u}$ at large x?

J-PARC Proposal P-04 (Peng and Sawada)

10¹² protons per spill (3 s) 50-cm long LH_2 / LD_2 targets 60-day runs for each targets assuming 50% efficiency p + p D-Y at 50 GeV also directly measure \overline{u} at large x

J/Ψ Production at 30 GeV

 J/Ψ production at 30 GeV is sensitive to quark and antiquark distributions

May be possible using the J-PARC high-momentum proton beam and the E16 spectrometer (designed for detecting e+ e- decay of Φ mesons)

Possible dilepton physics with pion beam

- d(x)/u(x) at large x for proton
- Valence quark distribution of pion at large *x*
- Exclusive dilepton production to study nucleon GPD, pions distribution amplitude (DA) and pion-nucleon Transition Distribution Amplitude (TDA)
- Meson beams at J-PARC complement many hadron physics programs at JLab 12 GeV upgrade

No nuclear correction for deuteron is needed

However, there are no $\pi^+ + p$ Drell-Yan data yet !

Can one extract meson PDFs from J/Ψ production?

Difference between $(\pi^- + p)$ and $(\pi^+ + p) J / \Psi$ cross sections

 $\sigma_{J/\Psi}(\pi^{-}+p) \propto V_{\pi}(x_{1})[u(x_{2})+\overline{d}(x_{2})] + S_{\pi}(x_{1})[u(x_{2})+d(x_{2})+\overline{u}(x_{2})+\overline{d}(x_{2})]$ $\sigma_{J/\Psi}(\pi^{+}+p) \propto V_{\pi}(x_{1})[d(x_{2})+\overline{u}(x_{2})] + S_{\pi}(x_{1})[u(x_{2})+d(x_{2})+\overline{u}(x_{2})+\overline{d}(x_{2})]$

$$\sigma_{J/\Psi}(\pi^- + p) - \sigma_{J/\Psi}(\pi^+ + p) \propto V_{\pi}(x_1)[u_V(x_2) - d_V(x_2)]$$

Only the valence-quark term remains!

 $\sigma_{J/\Psi}(\pi^- + p) - \sigma_{J/\Psi}(\pi^+ + p)$ is positive Directly proportional to $u_V(x_2) - d_V(x_2)$ Directly proportional to $V_{\pi}(x_1)$

Are there relevant data already?

Data from the NA3 paper and Ph.D thesis

Comparison between the NA3 data and CEM calculations based on current pion and nucleon PDFs

11

Measure Meson PDF with Drell-Yan Process

- Valence distribution at large *x* (comparison with Dyson-Schwinger Equation calculation)
- Polarization of virtual photon at large *x* (transition from transverse to longitudinal polarization?)
- Modification of p_T distribution at large x?
 Being pursued at COMPASS

Exclusive Drell-Yan measurements at J-PARC?

- Exclusive Drell-Yan with meson and antiproton beams are the time-like processes complementary to the deeply virtual meson production at Jlab, HERMES and COMPASS
- Exclusive Drell-Yan with meson beam at J-PARC will also complement the program at FAIR using antiproton beam

DVCS versus time-like Compton scattering

Time-like Compton Scattering at JLab $\gamma + p \rightarrow e^+ + e^- + p$

T. Horn et al, AIP Conf. Proc. 1374 (2011) 542

DEMP versus exclusive dilepton production

$$\gamma^* + N \to \pi + N'$$

Deep Exclusive Meson Production

space-like photon

$$\pi + N \rightarrow \gamma^* + N'$$

Exclusive Dilepton Production

time-like photon

DEMP from JLab and HERMES

$$\tilde{\mathcal{H}}^{du}(\eta,t) = \frac{8\alpha_S}{3} \int_{-1}^1 dz \, \frac{\phi_{\pi}(z)}{1-z^2} \int_{-1}^1 dx \, \left[\frac{e_d}{-\eta-x-i\epsilon} - \frac{e_u}{-\eta+x-i\epsilon}\right] \left[\tilde{H}^d(x,\eta,t) - \tilde{H}^u(x,\eta,t)\right]$$

Longitudinally polarized dilepton is expected

$$\pi^- p \rightarrow \gamma^* n \rightarrow \mu^+ \mu^- n$$

$$\frac{d\sigma}{dQ'^2 dt \, d(\cos\theta) \, d\varphi} = \frac{\alpha_{\rm em}}{256 \, \pi^3} \frac{\tau^2}{Q'^6} \, \Sigma_{\lambda',\lambda} \, |M^{0\lambda',\lambda}|^2 \sin^2\theta$$

Crucial Test of the validity of the twist expansion Transversely polarized dilepton for inclusive Drell-Yan

Evidence for longitudinally polarized dilepton in meson-induced Drell-Yan at large x?

As $x_{\pi} \rightarrow 1$, inclusive Drell-Yan becomes exclusive dilepton!

Other exclusive dilepton reactions sensitive to meson-baryon TDA

Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR

EPJ A51 (2015) 107

The $\bar{P}ANDA$ Collaboration

 $\overline{p}(p_1)$ $p(p_2)$ (q)(q)p DADA $\overline{p}p \rightarrow \pi^0 e^+ e^-$ CFCF's at PANDA $\pi^0 p TDA$ $\pi^0 \bar{p} TD$ u $\pi^{0}(k_{3})$ $p(p_2)$ $\pi^{0}(k_{3})$ $\overline{p}(p_1)$ s = 10 GeV², π⁰ forward s = 10 GeV², π^0 backward 240 F 240 do/dq² (fb/GeV² lo/dq² (fb/GeV² 220 220 200 200 180 180 160 160 140 140 120 120 100 100 80 80 60 60 40 40 E 20 20 0 0 5 6 7 8 9 5 6 7 9 q² [GeV²] q² [GeV²] 22 Can also be measured at J-PARC

J-PARC High-momentum Beam Line (Hi-P BL) S. Sawada, Pacific Spin 2019 New Primary Beam Line (high-p) in Hadron Hall FM magnet high-p Exp. Area SKS Warra La inte high-p COMET Quadrupole magnets A line **B** line Steering magnets Beam line will be available 30 GeV proton **B** line around the end of JFY2019. Branch $(\sim 10^{10} - 10^{12} \text{pps})$ •23 Point

Unseparated Secondary Beam In High-momentum Beam Line

- High-intensity secondary Pion beam of [5,15] GeV
- High-resolution beam: Δp/p ~ 0.1%

* Sanford-Wang: 15 kW Loss on Pt, Acceptance :1.5 msr%, 133.2 m

J-PARC E50 Experiment (Charmed Baryon Spectroscopy)

Stage-1 approved by J-PARC PAC-18, August 12, 2014.

From H. Noumi

Exclusive Drell-Yan measurement in J-PARC E50 Spectrometer

Missing-mass M_X spectra

- Data Taking: 50 days
- 1.5 < M_{µ⁺µ⁻} < 2.9 GeV
- $|t t_0| < 0.5 \, \text{GeV}^2$
- "GK2013" GPDs
- The exclusive Drell-Yan events could be identified by the signature peak at the nucleon mass in the missing-mass spectrum for all three pion beam momenta.

Expected Statistical Sensitivity

- Data Taking: 50 days
- 1.5 < M_{µ⁺µ⁻} < 2.9 GeV
- $|t t_0| < 0.5 \, \text{GeV}^2$

The statistics sensitivity is good enough for discriminating the predictions from two current GPD models.

Kinematic regions of GPDs explored by space-like and time-like processes

JLAB, HERMES, COMPASS → Space-like approach
J-PARC → Time-like approach

LETTER OF INTENT

Studying Generalized Parton Distributions with Exclusive Drell-Yan process at J- PARC

JungKeun Ahn,¹ Sakiko Ashikag,² Wen-Chen Chang,^{3, *} Seonho Choi,⁴ Stefan Diehl,⁵ Yuji Goto,⁶ Kenneth Hicks,⁷ Youichi Igarashi,⁸ Kyungseon Joo,⁵ Shunzo Kumano,^{9,10} Yue Ma,⁶ Kei Nagai,³ Kenichi Nakano,¹¹ Masayuki Niiyama,¹² Hiroyuki Noumi,^{13,8,†} Hiroaki Ohnishi,¹⁴ Jen-Chieh Peng,¹⁵ Hiroyuki Sako,¹⁶ Shin'ya Sawada,^{8,‡} Takahiro Sawada,¹⁷ Kotaro Shirotori,¹³ Kazuhiro Tanaka,^{18,10} and Natsuki Tomida¹³

A total of 23 collaborators from Japan, Korea, U.S. and Taiwan

Submitted to the 27th J-PARC PAC, Jan. 16th - 18th 2019

Summary

- High momentum beam line at J-PARC offer interesting opportunities to explore meson and nucleon structures (PDF, GPD, DA, TDA) through inclusive and exclusive dilepton production.
- Exclusive reactions using meson beams at J-PARC complement JLab 12 GeV and FAIR hadron physics program.
- First measurements appear feasible using the proposed E50 spectrometer. Further studies are required.