Reimei Symposium on "Synergies in Hadron Physics between J-PARC and JLab"@JLab 5 Nobember, 2019

High-momentum pion beamline at J-PARC and Open Charm Production

Hiroyuki NOUMI Research Center for Nuclear Physics, Osaka University Institute of Particle and Nuclear Studies, KEK

Form of Hadrons

Form of Hadrons

in describing hadrons beyond the "standard picture".

3

Roles of Heavy Flavors

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty$ $V_{CMI} ({}^1S_0, \overline{3}_c) = 1/2^* V_{CMI} ({}^1S_0, 1_c)$

[qq]

- Motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

4

[qq]

Schematic Level Structure of Heavy Baryons

- λ and ρ motions split (Isotope Shift)
- HQ-spin multiplet $(\vec{s}_{HQ} \pm \vec{j}_{Brown Muck})$

Lambda Baryons

	strange	charm	bottom
Λ (1830, 5/2⁻)		Λ_c(2940, ??)	
$m{\Lambda}$ (1690, ??) $m{\Lambda}$ (1670, 1/2 ⁻)		$\Lambda_{\rm c}(2880,5/2^+)$	$\Lambda_{f b}(6152) = \Lambda_{f b}(6146)$
$\Lambda(1520, 3/2^-)$ $\Lambda(1405, 1/2^-)$ $\Sigma^*(3/2^+)$		$ = \frac{\Lambda_{c}(2625, 3/2^{-})}{\sum_{c}^{*}(3/2^{+})} $	$\Lambda_{b}(5920, 3/2^{-})$ $\Lambda_{b}(5912, 1/2^{-})$ $\Sigma_{b}^{*}(3/2^{+})$
Σ(1/2 ⁺) Λ(GS)		$- \sum_{c} (1/2^{r})$	$\sum_{b}(1/2^{+})$

 $\rho - \lambda$ mixing (cal. By T. Yoshida)

I. Yoshida et al.,
 Phys. Rev. D92, 114029(2015)

Charmed Baryon Spectroscopy Using Missing Mass Techniques

- ✓ Production and Decay reflect [qq] correlation in Excited Y_c^*
- ✓ C.S. DOES NOT go down at higher *L* when q_{eff} >1 GeV/c.

S.H. Kim, A. Hosaka, H.C. Kim, and HN, PTEP, (2014) 103D01, S.H. Kim, A. Hosaka, H.C. Kim, and HN, Phys.Rev. D92 (2015) 094021

Production Rate:

 $R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$

1. Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

 q_{eff} ~1.4 GeV/c A~0.4 GeV ([Baryon size]⁻¹)

2. Population shared among HQ-spin multiplet

$$J_{BM} - s_{HQ} : J_{BM} + s_{HQ} = L : L +$$

 t-channel D* Reggeon at a forward angle

S. H. Kim, et al., PTEP, 2014, 103D01(2014) 3. Spectroscopic Factor ("ud" configulation)

$$\gamma$$
=1/2 for Λ_c 's, =1/6 for Σ_c 's

Production Cross Section

S.H. Kim, A. Hosaka, H.C. Kim, and HN PRD92, 094021(2015)

10

New data from LHCb

- $D^0 p$ invariant mass in $\Lambda_b \rightarrow D^0 p \pi^ -\Lambda_c(2940)$: known • likely 3/2-, (acceptable 1/2, 7/2) $-\Lambda_c(2880)$: known • 5/2+ confirmed $-\Lambda_c(2860)$: new • likely 3/2+, D-wave (L=2) resonance?
 - Questions arise;
 - Is $\Lambda_c(2940)$ an L=3 state (λ mode)?
 - Are $\Lambda_c(2880)$ and $\Lambda_c(2860)$ *LS* partners of *L*=2 (λ modes)?
 - Production rates in $p(\pi^-, D^{*-})Y_c^*$ will give answer.

Λ (2880) likely to be $\lambda \rho$ mode?

H. Nagahiro et al., PRD95 (2017) no.1, 014023

• P-wave transition seems to be suppressed in

 $\Lambda_c(2880)^{\frac{5}{2}^+} \to \Sigma_c^*(2520)^{\frac{3}{2}^+} + \pi(0^-).$

- It would be forbidden only in the case of $J_{BM}^P = 3^+$: "5/2-" state have large widths.
- $\Lambda_c(2880)^{\frac{3}{2}+}$ is likely to be a $\lambda \rho$ mode (λ =1, ρ =1) state.

Λ _c (2880) 5/2+	λλ	λρ	ρρ	Σ _c *(2520) 3/2+
color		Asymm		
Isospin		Symm. (I=1)		
Diquark spin Diquark orbit	Asymm. 0 Symm. 0	Symm. 1 Asymm. 1	Asymm. 0 Symm, 2	Symm. 1 Symm, 0
Lambda orbit	2	1	0	0
J _{BM} P	2+	1+, 2+, <mark>3+</mark>	2+	1+

16

Lambda_b(5146/5152) Phys. Rev. Lett. 123, 152001

- A new doublet Λ_b^* states decaying into $\Lambda_b \pi^+ \pi^-$ have been observed.
 - $-M_{\Lambda_b(6146)} = 6146.17 \pm 0.33 \pm 0.22 \pm 0.16 \text{ MeV}$
 - $-M_{\Lambda_b(6152)} = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \text{ MeV}$
 - $-\Gamma_{\Lambda_b(6146)} = 2.9 \pm 1.3 \pm 0.3 \text{ MeV}$
 - $-\Gamma_{\Lambda_b(6146)} = 2.1 \pm 0.8 \pm 0.3 \text{ MeV}$
- They are likely to be λ -mode with L=2...
- Λ_b (6146) dominantly decays to Σ_b ?
 - Similar to the case of $\Lambda_c(2880, 5/2^+)$

High-res., High-momentum Beam Line at J-PARC

Spectrometer Design

R&D Works

- Particle Identification (Osaka/Kyoto/Tohoku/RIKEN...)
 - Timing counters
 - T-Zero (Osaka): Cherenkov type ~50 ps
 - Resistive Plate Chamber (LEPS2/ELPH/Taiwan/JAEA/Tsukuba): Large Size~60 ps
 - Ring Image Cherenkov Detector
 - BeamRICH/RICH (Kyoto/Osaka/RIKEN/...)
 - Muon ID (Academia Sinica)
- Trackers (Tohoku/RCNP/RIKEN...)
 - SciFi Tracker (Focal Plane/Beam/Scattered particle)
 - DC (Forward, Barrel)
- High-speed DAQ system (RCNP/Tohoku/Taiwan/KEK...)
 - PC cluster-based DAQ scheme
 - Flexible "trigger": not only (π^-, D^*) but also $(K^-, K^*),...$

Time Zero Counter

- Hodoscope w/ Cherenkov Radiator for a Beam Rate: 60 M/spill (30 MHz)
 - -X-shape to cancel position dependence by taking mean time
 - $-\sigma$ <50 ps at 3-5 MHz

By T. Akaishi, K. Shirotori et al.

Measured Performance for MIPs

Resistive Plate Chamber

- TOF meas. for Scattered Particles
 - -Developed in LEPS

 $-\sigma$ ~60 ps

By N. Tomida, H. Ohnishi et al.

Expected PID performance w/ TOF vs Mom.

Fiber Tracker

By K. Shirotori et al.

- Faster Responding Trackers are needed for a Beam Rate: 60 M/spill (30 MHz)
 - Focal plane: XUV 1 set w/ ϕ 1mm fiber
 - Beam Trackers: XUV 2 sets w/ ϕ 0.5mm fiber
 - Scattered Particle Trackers : in Fabrication

Drift Chamber

- Barrel DC (Side DC) for backward-emitted, low mom. particles
 - -Two arms are ready and waiting for FEEs.
- Front/Forward DC for Forward-emitted particles
 - -To be prepared
 - -still missing pieces for better redundancy

High-speed DAQ system

Streaming DAQ(~50 GB/spill)

Demonstration of High-speed DAQ

40 CPUs and 256 GB Memories

Demonstration of High-speed DAQ

New Platform for Hadron Physics

- Baryon Spectroscopy with Heavy Flavors
 - $p(\pi^{-}, D^{*-})Y_{c}^{*}, p(\pi^{-}, K^{*})Y^{*}$ (E50)
 - $p(K^{-},K^{*})\Xi^{*}, p(K^{-},K^{+}K^{*})\Omega^{*}$ (Lol)
 - $-\pi^{-}p \rightarrow P_{c} \rightarrow J/\psi n, D^{-}\Lambda_{c}, D^{-}\Sigma_{c}$
- Hadron Tomography

- Exclusive DY in $\pi^- p \rightarrow \mu^+ \mu^- n$ (Lol)

- For Strangeness Nuclear Physics
 - Hyperon-Nucleon Interaction
 - Kaonic Nuclei
 - Vector Mesons in Nuclei
- For Neutrino Physics
 - Hadron Production for neutrino beams

J.C. Peng' s talk?

Muon IDT. Sawada, W.C. Chang, et al.

Conceptual design of muon identification system for the J-PARC E50

Remark

Synergies between J-PARC and JLab –

We have many items in Hadron Physics and R&D works for detectors/electronics/DAQ to collaborate between J-PARC and JLab.