lattice spectroscopy @ JLab Raúl Briceño - <u>http://bit.ly/rbricenoPhD</u>

Norfolk, VA [Home to ODU]

WATERSIDE

Amplitude analysis

Experiments

QCD

INT Program : "Accessing and Understanding the QCD Spectrum" August 17 - September 18, 2020

identification of states, production/decay mechanisms

furthermore, **most** structural information cannot be accessed directly from experiments

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- lattice spacing
- finite volume

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- lattice spacing
- finite volume

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- lattice spacing
- finite volume

$$D_{\mu} = \begin{pmatrix} & \\ \end{pmatrix} \uparrow (L/a)^3 \times (T/a)$$

- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- lattice spacing
- finite volume

the light sector

Wilson Dudek	Edwards Thomas Woss
PRL 118, 022002 (2017) Isoscalar π Paul A. Priceño	PHYSICAL REVIEW LETTERS week ending 13 JANUARY 2017 π Scattering and the σ Meson Resonance from QCD h^* logef L Dudek ^{1/2/†} Robert G. Edwards h^{\dagger} and David L Wilson ^{3/8}
¹ Thom	JLAB-THY-17-2534 Isoscalar $\pi\pi, K\overline{K}, \eta\eta$ scattering and the σ, f_0, f_2 mesons from QCD Raul A. Briceño, ^{1, 2, *} Jozef J. Dudek, ^{1, 3, †} Robert G. Edwards, ^{1, ‡} and David J. Wilson ^{4, §} (for the Hadron Spectrum Collaboration) homes leftereon National Accelerator Facility, 12000, leftereon Ascence, Neurost Neuro, VA 22606, USA
fi si d p at t D D S O Introduction	PHYSICAL REVIEW LETTERS 123 , 042002 (2019) Quark-Mass Dependence of Elastic π <i>K</i> Scattering from QCD David J. Wilson, ^{1,*} Raúl A. Briceño, ^{2,3,†} Jozef J. Dudek, ^{2,4,‡} Robert G. Edwards, ^{2,§} and Christopher E. Thomas ^{5,]} PHYSICAL REVIEW D 100 , 054506 (2019)
as a tool to ir interactions, q scalar channel to 0, is domin despite experi place for many $\begin{bmatrix} \mathbf{V} \\ 0 \\ \mathbf{V} \\ 0$	² <i>Thoma</i> b_1 resonance in coupled $\pi\omega$, $\pi\phi$ scattering from lattice QCD Antoni J. Woss, ^{1,*} Christopher E. Thomas, ^{1,†} Jozef J. Dudek, ^{2,3,‡} Robert G. Edwards, ^{2,‡} and David J. Wilson ^{4,}

Interesting but "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum Z_{b,n} Z_{a,n}^* e^{-E_n t}$

... using distillation and a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

Interesting but "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum Z_{b,n} Z_{a,n}^* e^{-E_n t}$

... using distillation and a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

Isoscalar spectra: S-wave dominant

Spectrum including a large basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

*m*_π=391 MeV

Isoscalar spectra: S-wave dominant

Spectrum including a large basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

two-particle spectrum satisfies:
$$\det[F^{-1}(P,L)+\mathcal{M}(P)]=0$$

- Se Lüscher (1986, 1991)
- Rummukainen & Gottlieb (1995)
- 🖗 Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005)
- Feng, Li, & Liu (2004); Hansen & Sharpe / RB & Davoudi (2012)
 RB (2014)

lattice QCD

$\pi\pi$ Spectrum - (I=1 channel)

$\pi\pi$ Spectrum - (I=1 channel)

$\pi\pi$ scattering - (I=1 channel)

Dudek, Edwards & Thomas (2012) Wilson, RB, Dudek, Edwards & Thomas (2015)

The ρ vs m_{π}

The ρ vs m_{π}

$\pi\pi$ scattering - (I=0 channel)

The σ vs m_{π}

πK scattering - (I=1/2 channel)

 \mathcal{M}

multi-channel systems - the cutting edge!

set the *necessary* formalism for doing coupled-channel scattering of

Feng, Li, & Liu (2004) [inelastic scalar bosons]Hansen & Sharpe / RB & Davoudi (2012) [moving inelastic scalar bosons]RB (2014) [general 2-body result]

For date, the Hadron Spectrum collaboration is the only one to have extracted coupled-channel scattering amplitude information from QCD

π π, KK, ηη [isoscalar]:	RB, Dudek, Edwards, Wilson - PRL (2017)
	RB, Dudek, Edwards, Wilson - PRD (2018)
Kπ, Kη:	Dudek, Edwards, Thomas, Wilson - PRL (2015)
	Wilson, Dudek, Edwards, Thomas - PRD (2015)
πη, KK:	Dudek, Edwards, Wilson - PRD (2016)
Dπ, Dη, D _s K:	Moir, Peardon, Ryan, Thomas, Wilson - JHEP (2016)
$\pi\pi$, KK [isovector]:	Wilson, RB, Dudek, Edwards, Thomas - PRD (2015)

multi-channel systems - the cutting edge!

0-

Solution Above $2m_K$, there is not a one-to-one correspondence

$$det \begin{bmatrix} F_{\pi\pi}^{-1} + \mathcal{M}_{\pi\pi,\pi\pi} & \mathcal{M}_{\pi\pi,K\overline{K}} \\ \mathcal{M}_{\pi\pi,K\overline{K}} & F_{K\overline{K}}^{-1} + \mathcal{M}_{K\overline{K},K\overline{K}} \end{bmatrix} = 0$$
Feng, Li, & Liu (2004),
Hansen & Sharpe / RB & Davoudi (2012)

infinite volume:
- coupled, scattering amplitude
- branch cuts

finite volume:
- power-law finite-volume effects

multi-channel systems - the cutting edge!

Solution Above $2m_K$, there is not a one-to-one correspondence

Feng, Li, & Liu (2004), Hansen & Sharpe / RB & Davoudi (2012)

- Solution For a set of the set of
- Need that many energy levels at the same energy
- Alternatively, parametrize scattering amplitude and do a global fit

coupled-channels analysis

S-wave above $2m_{\pi}$, $2m_K$, and $2m_{\eta}$

Ansatz $\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e \\ c+ds & f & g \\ e & g & h \end{pmatrix}$

tensor $\pi\pi$ -*KK*


```
Lellouch & Lüscher (2000)
Kim, Sachrajda, & Sharpe
Christ, Kim & Yamazaki (2005)
<li...</li>
Hansen & Sharpe (2012)
RB, Hansen Walker-Loud (2014)
RB & Hansen (2015)
```

$$\begin{aligned} \left| \left\langle \mathbf{2} \middle| \mathcal{J} \middle| \mathbf{1} \right\rangle_{L} \right| &= \sqrt{\mathcal{A} \mathcal{R} \mathcal{A}} \\ \text{Lellouch-Lüscher matrix:} \\ \mathcal{R}(E_{n}, \mathbf{P}) &\equiv \lim_{E \to E_{n}} \left[\frac{(E - E_{n})}{F^{-1}(P, L) + \mathcal{M}(P)} \right] \end{aligned}$$

