

GEMs Chambers for SBS

K. Gnanvo

SBS Collaboration Meeting 08/06/2019

UVa: K. Gnanvo, S.Jian, N. Liyanage, A. Rathnayake

HU: M. Kohl, M. Rathnayake, T. Gautam

INFN: E.Cisbani, P. Musico, R. Perrino, L. Re

And many more

Outline

Status of UVa GEMs

- Production Status
- Commissioning in EEL Clean Room 124

Preparation for GMn / GEn-RP Experiments

- Status of GEM Electronics & DAQ
- Gas System

U-V Front Tracker GEMs

- Design and Procurement
- > Timeline for detector Construction

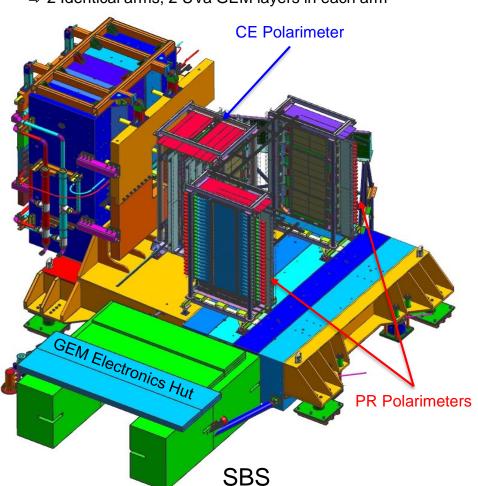
2 INFN GEM layers

60 cm

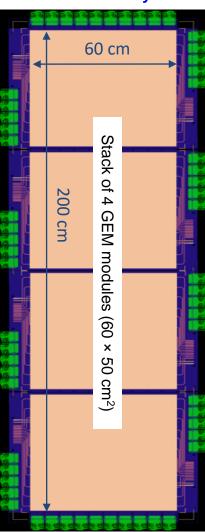
Stack of

GEM

modules


(40

×


50 cm²)

GEn-RP GEM Trackers in SBS

- The Charge-Exchange (CE) Polarimeter:
 - ⇒ 2 INFN + 2 UVa layers, in front of Cu analyzer.
 - ⇒ 4 UVa layers behind the Cu analyzer.
- The Proton-Recoil (PR) Polarimeter:
 - ⇒ 2 Identical arms, 2 UVa GEM layers in each arm

10 UVa GEM layers

Status of UVa GEMs

8/6/2019 SBS Coll. Meeting @ JLab

UVa GEMs: Summary of UVa GEM Modules

A CONTRACTOR DESCRIPTION				
Module 01: OK Where: UVa - shelve Tested at: UVa, known fixes	Module 11: OK Where: EEL-124 - shelve Tested at: UVa, known fixes	Module 21: OK Where: Hall A - PREX Tested at: UVa & JLab	Module 31: OK Where: EEL-124 - shelve Tested at: UVa	Module 41: OK Where: EEL-124 - shelve Tested at: UVa
Module 02: OK, 1HV out Where: UVa - shelve Tested at: UVa, known fixes	Module 12: OK, 1HV out Where: Hall A - PREX Tested at: UVa & JLab	Module 22: OK Where: EEL-124 – Layer#3 Tested at: UVa & JLab	Module 32: OK Where: EEL-124 - shelve Tested at: UVa	Module 42: OK Where: EEL-124 – Layer#3 Tested at: UVa & JLab
Module 03: OK Where: UVa - shelve Tested at: UVa, known fixes	Module 13: OK Where: EEL-124 – Layer#2 Tested at: UVa & JLab	Module 23: OK Where: EEL-124 - shelve Tested at: UVa	Module 33: OK Where: EEL-124 – Layer#1 Tested at: UVa & JLab	Module 43: OK Where: EEL-124 - shelve Tested at: UVa
Module 04: OK Where: UVa - shelve Tested at: UVa, known fixes	Module 14: OK Where: Hall A - PREX Tested at: UVa & JLab	Module 24: OK Where: UVa - shelve Tested at: UVa	Module 34: Stretch issues Where: UVa - shelve Tested at: UVa, require fixes	Module 44: FAILED Where: UVa - shelve Tested at: under Investigatio
Module 05: Stretch issues Where: UVa - shelve Tested at: UVa, require fixes	Module 15: OK Where: EEL-124 - shelve Tested at: UVa	Module 25: OK Where: EEL-124 – Layer#2 Tested at: UVa & JLab	Module 35: ○ OK, 1HV out? Where: EEL-124 - shelve Tested at: UVa & JLab	Module 45: OK Where: EEL-124 – Layer#3 Tested at: UVa & JLab
Module 06: Stretch issues Where: UVa - shelve Tested at: UVa, require fixes	Module 16: OK Where: EEL-124 – Layer#1 Tested at: UVa & JLab	Module 26: OK Where: Hall A - PREX Tested at: UVa & JLab	Module 36: Where: EEL-124 - shelve Tested at: UVa	Module 46: Where: UVa - shelve Tested at: UVa
Module 07: OK Where: EEL-124 - shelve Tests: UVa, known fixes	Module 17: OK Where: EEL-124 – Layer#2 Tested at: UVa & JLab	Module 27: OK Where: EEL-124 - shelve Tests: UVa	Module 37: OK Where: EEL-124 - shelve Tested at: UVa	Module 47: OK Where: EEL-124 – Layer#1 Tested at: UVa & JLab
Module 08: OK Where: EEL-124 - shelve Tested at: UVa, known fixes	Module 18: OK Where: Hall A - PREX Tested at: UVa & JLab	Module 28: OK Where: Hall A - PREX Tested at: UVa & JLab	Module 38: ○ OK Where: EEL-124 - shelve Tested at: UVa	Module 48: OK Where: UVa - shelve Tested at: UVa
Module 09: OK Where: EEL-124 - shelve Tested at: UVa, known fixes	Module 19: OK Where: EEL-124 – Layer#1 Tested at: UVa & JLab	Module 29: OK Where: EEL-124 – Layer#3 Tested at: UVa & JLab	Module 39: OK Where: EEL-124 - shelve Tested at: UVa	Module 49: ⇒ Under Test Where: UVa - shelve Tested at: under test
Module 10: OK Where: EEL-124 - shelve Tested at: UVa, known fixes	Module 20: OK Where: EEL-124 – Layer#2 Tested at: UVa & JLab	Module 30: OK Where: EEL-124 - shelve Tested at: UVa	Module 40: OK Where: EEL-124 - shelve Tested at: UVa	Module 50: Under assbly Where: UVa – clean room Tested at: Not yet

First modules: Require straightforward fixes
Under control

4 modules: stretching related HV issues
Under investigation
SBS Coll. Meeting @ JLab

Modules 49 and 50: Spare modules Under construction and tests

UVa GEMs: Cosmic Setup in EEL124

UVa GEMs: Status of Cosmic Setup in EEL124

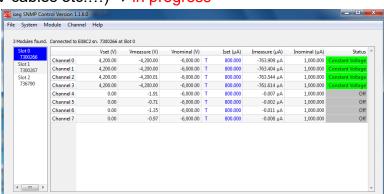
Status of the UVa GEM layers assembly

- 3 layers installed on the cosmic stand ⇒ HV test Ok
- All work on the 3 layers side (HV, HDMI, Gas tubing, APV25-backplane support) ⇒ completed
- Connection to the DAQ / readout system 10m-long HDMI from back planes to MPDs ⇒ in progress
- 4th layer is currently under assembly on the table ⇒ Expected to be completed in two weeks

Status of APV low voltage power supply

- Use available LV power supply modules (working with C. Cuevas' group)
- Same scheme is under test with UVa GEMs for PREX Trackers in Hall A
- Packaging and other small details (cooling of the voltage regulator, LV cables etc....) ⇒ in progress

Status of HV Power supply for the GEMs


- UVa Wiener crate + 3 HV Mpod modules moved to JLab
- Enough channels for 6 UVa GEM layers
- Already in operation ⇒ used for the test of GEM layer #3

Status of HDMI cables

- Short to Long compatibility tests ⇒ Done
- Procurement of HDMI cables (long and short) ⇒ Done (Need some place for storage of the cable boxes)
- Cabling of the 3 assembled layers with long HDMI ⇒ Ongoing

Trigger Counters

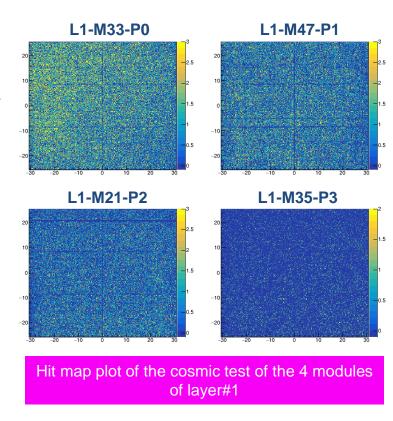
- Use 4 long (> 2.5 m) counters in store in ESB ⇒ thanks Bogdan
- Need help from Jessie to move them ⇒ ideally next week
- Bogdan offers to help fixing light guides and voltage dividers ⇒ ideally in the next 2 weeks

UVa GEMs: MPD readout / DAQ setup in EEL124

77 MPD modules for all 11 UVa GEM layers in hand

- UVa: 58 "original" + 3 new, Glasgow U.: 11 new , JLab: 5 new
- "Original" modules needed some I2C hardware fixes ⇒ 39 already fixed and tested with latest firmware and libraries (Brian Moffit)
- https://docs.google.com/spreadsheets/d/1r4riWfe9C7jSSWQ1xkkCZngdpKBAs1grYjP 15RH3Jm0/edit#gid=1565304014
- A few MPDs have some issues ⇒ Paolo will look at the issue in September

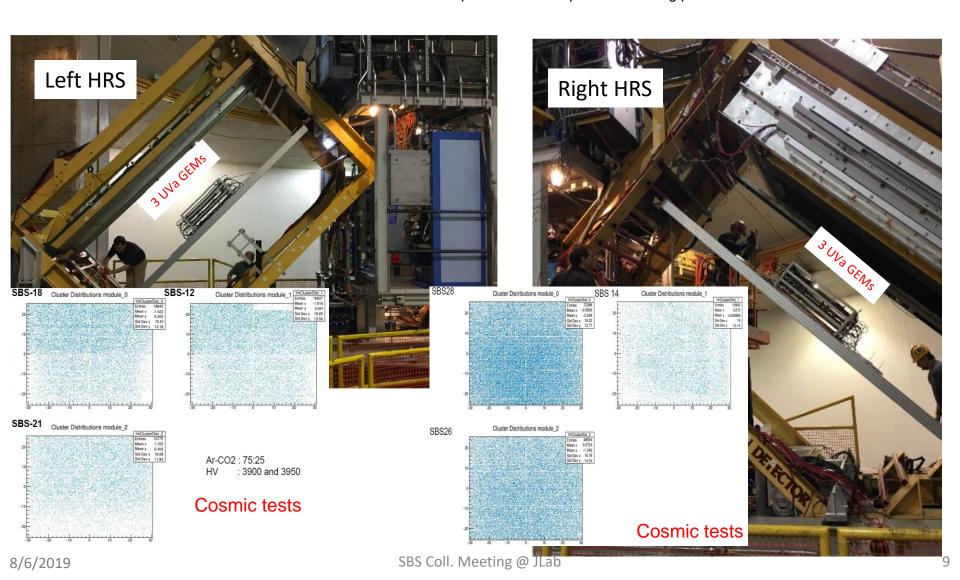
Status of the other MPD readout / and DAQ items:


- All APV25 needed for UVa GEMs in hand (900 form UVa and 100 from HU)
- JLab MPD trigger and clock modules in use in Testlab and EEL setups
- Will make full inventory of low cost items like back planes

Set up the DAQ for cosmic stand (Support from Bryan Moffit)

- Set up and configure the DAQ for 1 layer with Bryan

 ideally start this week
- Latest version of firmware, libraries, configuration tools etc.
- Setup all 3 layers


 Need a second VME crate, ideally by the following next two weeks (mid august)
- Plan: Start cosmic data with all 3 layers by mid August

UVa GEMs: In both HRS spectrometer for PREX

- Modules #12, 14, 18, 21, 26, 28
- First use of SBS GEM in an actual experiment at JLab: Excellent opportunity for commissioning and validation of the chambers
- The modules were all tested with cosmic before installation but Help us define the operation working point later for GEn-RP

Preparation for GMn / GEn-RP Experiments

8/6/2019 SBS Coll. Meeting @ JLab 10

Integration of UVa GEM layer into BB (GMn)

	201	9				202	20											202	21		
	Α	s	0	N	D	J	F	М	Α	М	J	J	Α	S	О	N	D	J	F	М	Α
Main SBS/BB <u>Timeline</u>																					
Full Cosmic Testing Underway, all components with final DAQ																					
Start preparation for movement of equipment in Hall A																					
Installation of SBS starts (pending CREX de-installation)																					
Detectors move to the Hall A																					
Detector commissioning in final location																					
First beam to the <u>GMn</u> experiment																					
GEM Front Tracker installation in BigBite	Ĭ]]]		Ī			
Ship to JLab latest tested GEM modules (exp. 4)	Х																				
Fix shorted sectors showed up in June/2019																					
(replace modules), and test new configuration	X																				
Load BigBite Frame with the 4 tested chambers		Х																			
Install loaded BigBite Frame into the BB																					
spectrometer, cable and pipe chambers		Х									,										
Install BB UVa Layers (Sep. 2 nd and 3 rd weeks)		Х				•				U\											
Test overall setup of Front Tracker			Х							lay	ers										
Test BigBite DAQ (including GEM readout)			Х	Х																	
Participate in cosmic testing of all components					Х	Χ	Х														
Support moving BB to Hall A								Х	X	X											
Support installation in Hall A										Χ	Χ	Χ									
Support commissioning in Hall A													Х	Х	Х	Х	Х	Х	Χ		
Support operation of experiment																				Х	Х

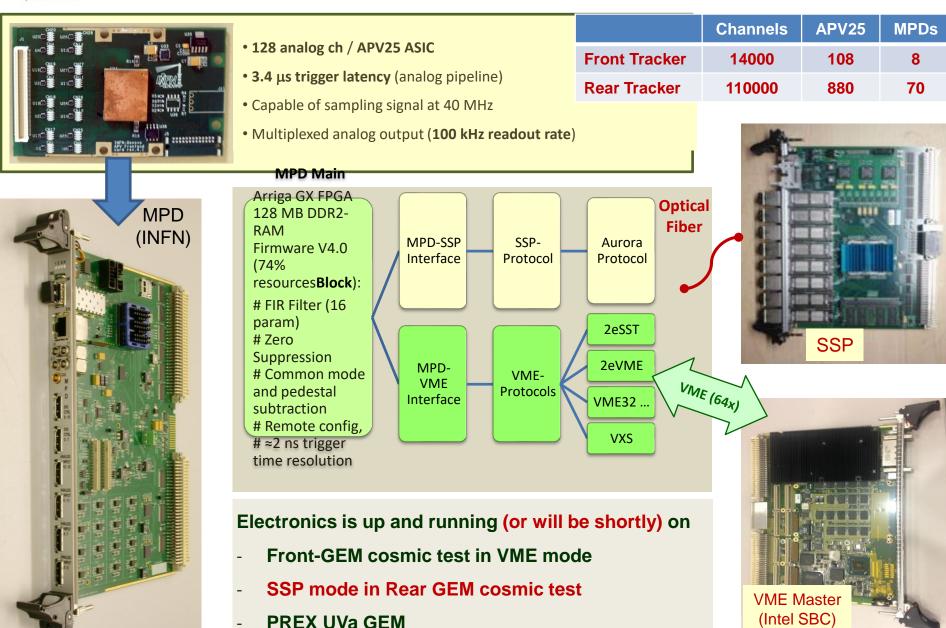
- Ideally UVa GEM for BB can be installed in Sept week #2 or #3 ⇒ Pretty straight forward,
- If well coordinated with Doug and Jessie's crew ..., one week is more than enough for the installation in BB

8/6/2019 SBS Coll. Meeting @ JLab 11

Integration of UVa GEM layers into SBS (GEn-RP)

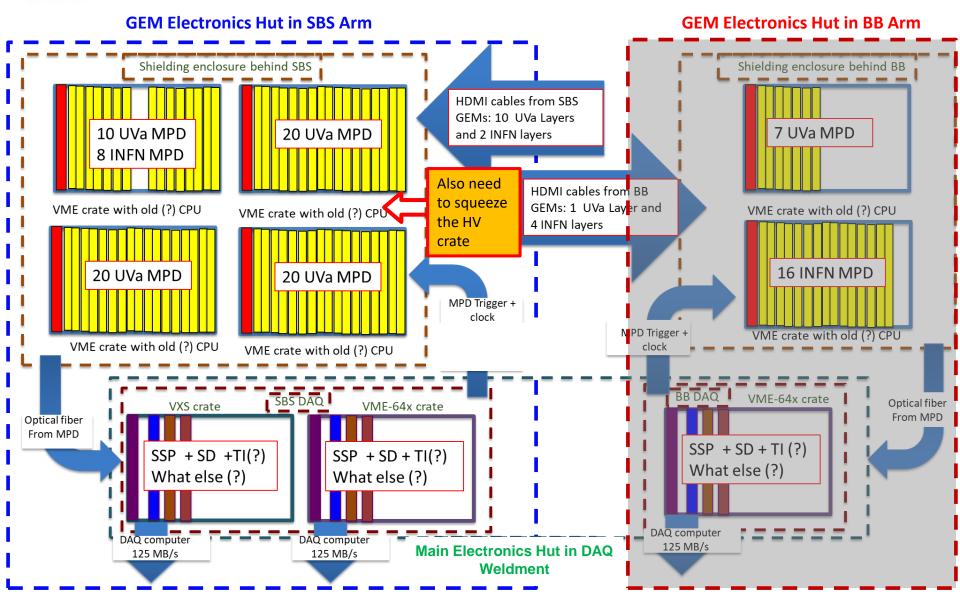
To Do List (next 12 Months)	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Manpower
layer #1, #2 and #3 on cosmic stand	Current	status	•										
Layer #3: Assembly / Cosmic Tests	Assemb	le Test											KG, AR, MR, TG (NL & MK)
Layer #4: Assembly / Cosmic Tests		Ass.	Test										KG, AR, MR, TG (NL & MK)
Layer #4 in BB			вв										KG, AR, MR, TG (NL & MK)
Layer #5: Assembly / Cosmic Tests			Ass.	Test									KG, AR, MR, TG (NL & MK)
Layer #3 & #5 in Gen-RP Ch. Ex Pol.					Ch. Ex				INF	-NI			KG, AR, MR, TG (NL & MK)
Layer #6: Assembly / Cosmic Tests				Ass.	Test				laye				KG, AR, MR, TG (NL & MK)
Layer #7: Assembly / Cosmic Tests					Ass.	Test							KG, AR, MR, TG (NL & MK)
Layer #6 & #7 in Gen-RP Ch. Ex Pol.							Ch. Ex	۲.					KG, AR, MR, TG (NL & MK)
Layer #8: Assembly / Cosmic Tests						Ass.	Test						KG, AR, MR, TG (NL & MK)
Layer #9: Assembly / Cosmic Tests							Ass.	Test					KG, AR, MR, TG (NL & MK)
Layer #8 & #9 in Gen-RP Ch. Ex Pol.									Ch. Ex				KG, AR, MR, TG (NL & MK)
Layer #10: Assembly / Cosmic Tests								Ass.	Tes				KG, AR, MR, TG (NL & MK)
Layer #11: Assembly / Cosmic Tests									Ass.	Test	4		KG, AR, MR, TG (NL & MK)
Layer #8 & #9 in Gen-RP Proton Pol.											PP		KG, AR, MR, TG (NL & MK)
Layer #1: Re-Assembly / Cosmic Tests										Ass.	Test		KG, AR, MR, TG (NL & MK)
Layer #2: Re-Assembly / Cosmic Tests											Ass.	Test	KG, AR, MR, TG (NL & MK)
Layer #8 & #9 in Gen-RP Proton Pol.												PP	KG, AR, MR, TG (NL & MK)

- INFN layers for in Ch. Ex frame (anytime between January and June 2020)
- Likely, first layer in February 2020
- Second INFN layer, if available for in Ch. Ex frame (after April 2020)



Integration of UVa GEM layers into SBS (GEn-RP)

Items	People	Completion target
UVa GEM: Assembly of 10 layers	<u>Gnanvo</u> , A. Rathnayake, M. Rathnayake,	Spring 2020
Ova GEWI. Assembly of 10 layers	(Liyanage, Kohl)	(see slide 8)
UVa GEMs: Readout and DAQ for commissioning	Gnanvo, T. Gautam (50%), (Liyanage, Kohl)	Spring 2020
UVa GEMs: Commissioning with cosmic	Gnanvo, A. Rathnayake, M. Rathnayake, T. Gautam, (Liyanage, Kohl)	Spring 2020 (see slide 8)
UVa GEMs: Installation of 6 GEMs in central frame (CE Polarimeter)	Gnanvo, Kohl, et al., & With support from Hall A Technicians	Feb 2020 (see slide 8)
UVa GEMs: Installation of GEMs in side frames (Recoil Proton Polarimeter)	Gnanvo, Kohl, et al., & With support from Hall A Technicians	May 2020 (see slide 8)
INFN GEMs: Assembly and Commissioning of 2 layers + electronics	Cisbani, et al., <u>Gnanvo</u> , (Liyanage, Kohl)	Fall / Winter 2019
INFN GEMs: Installation in in central frame (Charged Veto detectors)	Gnanvo, M. Kohl, et al., Cisbani, & With support from Hall A Technicians	Spring 2020



SBS GEM Electronics for Gen-RP

SBS GEM Electronics for Gen-RP

- JLab custom device to distribute the clock & trigger to the MPD from the SSP instead of the Phillips 757 modules to save money
- Statements yesterday that these modules have 16 inputs, we would need 20 inputs according to this scheme

Status of SBS GEM Electronics (for GEn-RP arm)

Items for	Need	In hand (total)	Spares
MPDs (UVa GEMs)	70	yes	~2
APV25 FE Cards (UVa GEMs)	880	yes	yes (A few)
12-slots backplane (UVa GEMs)	40	42	Not yet
5-slots backplane (UVa GEMs)	80	82	Not yet
MPDs (INFN GEMs)	8	yes	A few
APV25 FE Cards (INFN GEMs)	108	yes	yes
Backplanes (INFN GEMs)	Flex: 6 Rigid: 18	yes	yes

3 SSP modules

TI – Trigger supervisor

Master VME (for SSP and TI)

SBS GEMs Electronic Hut

8/6/2019

3 VME64x / VXS (for SSP, TI ...)

4 VME crate (no master) for MPDs

Item

SBS GEM Electronics - components

Status

3 in hand: 2 with UVa, 1 with Paolo (Italy)

Available (Alex) + spares

JLab Engineering - (R. Wines talk)

12 ordered (Alex)

4th (for BB) identified to be in Ben's hand in Hall A

3 VXS crate ordered (Alex) – How about the 4th (for BB)?

6 in hand for SBS and BB (Alex) + 3 more in RHRS as spares

17

Trigger / clock fan-out (78 channels)	JLab custom boards (under test in EEL and Test lab)
1 VME minicrate for slow control + Master	Available (Alex) Do we use the same for BB?
Short HDMI cables (+ spares) : connected to the GEMs	In hand (in EEL 124)
Long HDMI cables (374 + 14 spares): to the MPDs	In hand (in EEL 125 ⇒ Could it be store in EEL 126?)
78 Optical fiber MPD – SSP connection and tranceivers	30 optic fibers and 150 transceivers ordered (Alex)
2 × 78 (+ 1) NIM cables trigger and clock distribution	To be identified / procured (1 from SBS GEM hut to electronic hut)
46 x HV cables (15 m?, 55 m?)	To be produced / provided at JLab
6 x LV cables pairs (15 m?)	To be identified / procured
HV power supplies for 46 channels (40 UVa GEMs + 6 INFN GEMs)	In hand: 1 Wiener crate & 6 HV modules (8 ch. each) => 42 channels To be procured: 1 spare crate + at least one more HV module
LV power supply	Available at Jlab, Currently used / tested in cosmic (+spare)

SBS Coll. Meeting @ JLab

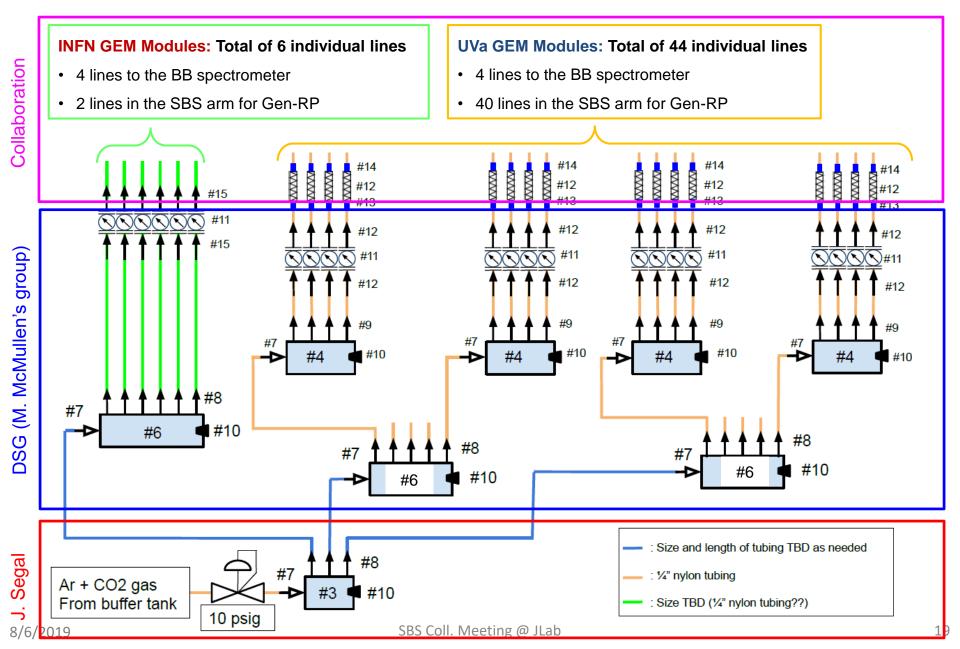
Gas System for SBS & BB GEMs

Gas volume need for GEn BigBite + GEn-RP: most demanding in term of GEM layers

- ⇒ 6 FT layers (18 INFN modules) and 11 UVa GEM layers (44 UVa GEM modules)
- \Rightarrow For 5 vol. change / h: UVa module 5 × 3.4 L = 17 L / h and INFN module 5 × 2.4L = 12 L / h
- ⇒ Total gas flow volume 964 L / hours for 5 volume change / hours (This is for GEp V)
 - ⇒ More likely 600 L / hours for GMn & GEn-RP
- ⇒ Per month: ~600,000 STP liters of Argon + 150 000 STS liters of CO2

Gas Shed and Mixing System: (see following slides)

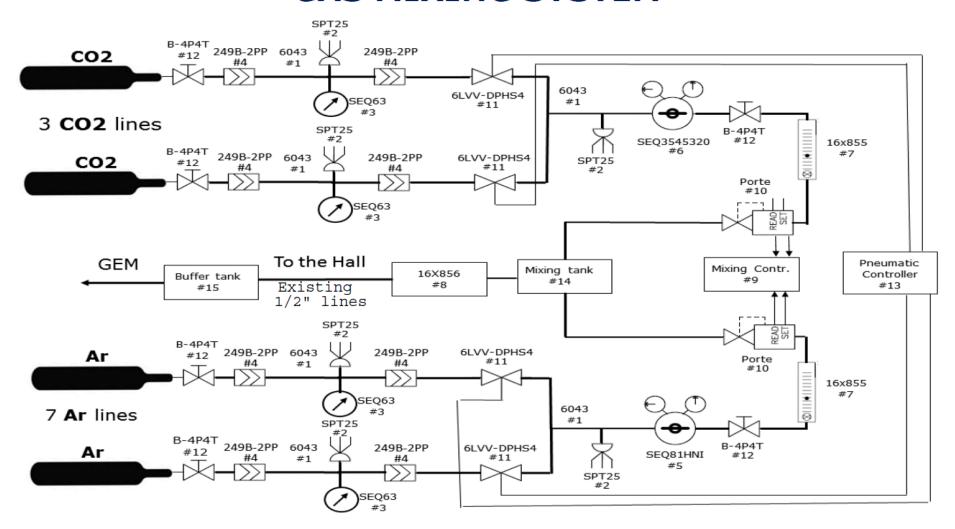
- ⇒ Need bigger gas shed outer enclosure ⇒ Requires 7 T-size Argon and 3 K-Size Argon
- ⇒ Jack Segal estimate that the space available for the existing gas shed is sufficient for the gas mixture
- ⇒ Jack Segal has completed the design for the gas mixing system and has a detail estimated at 30k\$ detail
- ⇒ Jack responsible of the Gas mixing system and the main 1/2-inch gas line carrying the gas down to the pivot location in Hall A. These ½-inch lines already exist in place and will be re-purposed for this system


Gas Distribution System

- ⇒ Detector Support Group @ JLab ⇒ Marc McMullen (see next slides)
- ⇒ The collaboration (Nilanga, Evaristo) is responsible for gas distribution system from the pivot to the GEMs

Gas System SBS / BB GEMs

(John Boyd, UVa)



Hall A GEM Gas Mixing

(J. Segal)

GAS MIXING SYSTEM

Hall A GEM Gas Mixing Cost Estimate

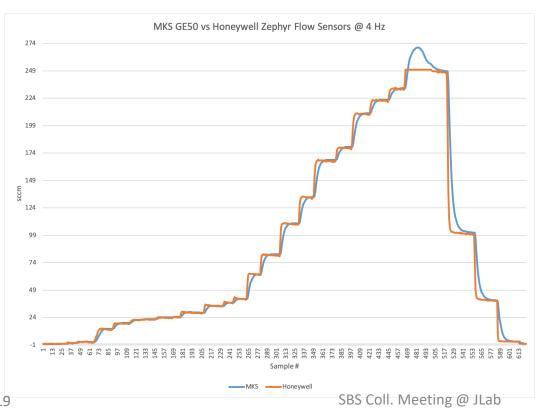
(J. Segal)

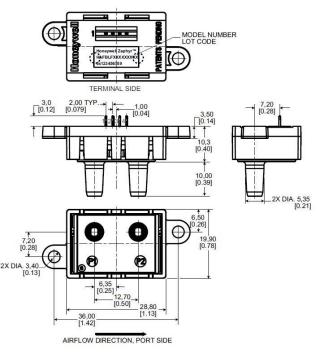

GAS MIXING SYSTEM PARTS

#	Part	Part number	Price/	Units	Price\$
		5040	Unit	10	2 2 4 4
1	Flex Hose Assembly - Armored (3 Foot Long)	6043	187	12	2,244
2	Pressure sensor from Automation Direct	spt25-10-3000a	115	12	1,380
3	Small Pressure Gauge (Brass) (0-3000psig)	SEQ631133	24	12	288
4	200 Series Check Valves 0 to 3000 psig	249B-2PP	57	20	1,140
5	81 Series Dual-Stage General Purpose Regulator - Brass (no inlet fitting) (for the argon)	SEQ81HNI	295	1	295
6	3540 Series Heated Dual-Stage Regulator - Brass (for the CO2)	SEQ3545320	594	1	594
7	2 to 25 LPM Variable Area Flowmeter	Item# 16X855 2510A2A16SVVT	82	2	162
8	2 to 25 LPM Variable Area Flowmeter	Item# 16X856 2510A2A16BNBN	54	1	54
9	Mixing Controller (made by Jack)		3,500	1	3,500
10	Mass Flow Controller Porte(601AV,MFC,NCV,0-5V,1/4CP) + MFC T-Cable adapter(BHT,RS232,T-PAR)*	601AVQAAD22V + 7.03.366	1,775+110=1,885	4 or 3	7,500
11	316L VIM-VAR UHP High Pressure Diaphragm Sealed Valve, 1/4 in. Swagelok Tube Fitting, NC	6LVV-DPHS4-C	323	10	3,230
12	Brass Quarter-Turn Instrument Plug Valve, 1/4 in. Swagelok Tube Fitting, 1.6 Cv	B-4P4T	42	12	502
13	Pneumatic controller (made by Jack)		3,000	1	3,000
14	Mixing air tank (2 gal)	91022	63	1	70
15	Buffer air tank (5 gal)	91050	90	1	100
16	Fastenal Part No. (SKU): 0508510 48" x 44" x 29 White Poly 1200Lb-WLL Bulk Box $\ast\ast$	0508510	363	1	363
17	49" x 45" x 3" White Poly Lid **	0508512	89	1	89
18	Fittings, papes				5,000
	Total			30,000)

Hall A GEM Gas Distribution

(Marc McMullen, DSG)




Hall A GEM Gas: Flow Control and Monitoring

(Marc McMullen, DSG)

- Hall A requires monitored flow for all distribution circuits (48).
- DSG has identified a viable option on market to measure mass flow and provide an output signal that can be monitored and used in EPICS for alarms.
 - DSG design will include individual manual valves for each line.

8/6/2019

Hall A GEM Gas Cost Estimate

(Marc McMullen, DSG)

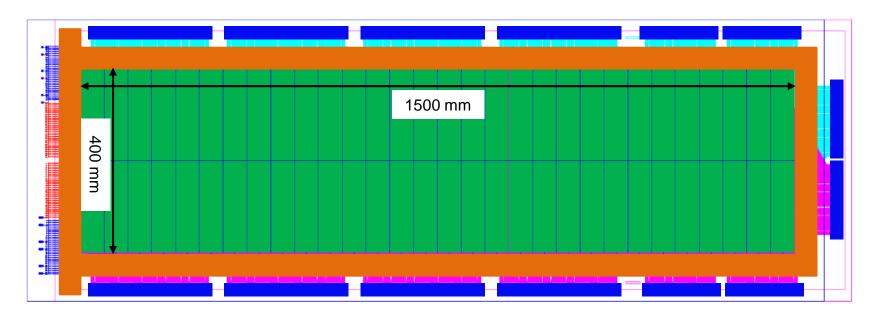
- DSG will design and build the Hall A gas distribution system
 - SBS/BB gas distribution has multiple configurations. Gas distribution system will need to be designed to support changes.
 - This will include flow control and remote monitoring for each GEM module.
- DSG is developing cost list for material and equipment.
- Flow sensors have arrived and are being tested.

			# of	Cost per	
Component	Part#	Description	units	unit	Total Cost
PR1	McMaster 1888k1	0-15 psi low pressure regulator	1	\$94.00	\$94.00
PI1	McMaster 3846k99	0-15 psi gauge on PR1 out	2	\$18.13	\$36.26
PT1	626-07-GH-P1-E4-S1	0-15 psig transducer	2	\$135.00	\$270.00
Manifold 1	McMaster 5975k19	1/2 NPT to 6 of 3/8 NPT out (1/2 tube)	1	\$33.06	\$33.06
Panel 1	GUESTIMATE	Holds manifold 1, PR1, PI1-2, PT1-2	1	\$100.00	\$100.00
Manifold 2	McMaster 5975k15	3/8 npt to 5 of 1/4 npt out (FWD)	2	\$23.95	\$47.90
Panel 2	GUESTIMATE	Holds manifold 2, FMV/FT, needle valves	1	\$250.00	\$250.00
Manifold 3	McMaster 5975k36	1/2 npt to 3 of 3/8 npt (2nd and 3rd)	4	\$29.28	\$117.12
Panel 3	GUESTIMATE	Holds manifold 3	1	\$100.00	\$100.00
Manifold 4	McMaster 5975k12	3/8 npt into 4 of 1/4 npt out	12	\$21.20	\$254.40
Panel 4	GUESTIMATE	Holds Manifold 4, FMV and FT	12	\$150.00	\$1,800.00
				,	, ,
FMV1 to 10	Dwyer RMA-13-ssv	For the larger volume GEMs	10	\$48.00	\$480.00
FMV11 to 58	Dwyer RMA-12-ssv	GEMs	48	\$48.00	\$2,304.00
1/8 npt to 1/4" push loc	· ·	For FMV connections	120	\$3.16	\$379.20
2/0 mpt to 2/ 1 publi loc	William Ster Stroke			φ0.10	φ575120
FT11 to 58	Honeywell Zephyr	0-400 sccm flow transducer	48	\$91.66	\$4,399.68
FT1 to 10	Honeywell Zephyr	0-750 sccm flow transducer	10	\$95.36	\$953.60
1 to 10	zep	o / 50 500m now transaude.		ψ55.50	φ355.00
1/4 npt to 1/2" comp	B-810-1-4	PR1 in and out	2	\$13.00	\$26.00
1/4 npt to 1/4 posh lok		For gauges and transducers	64	\$3.16	\$202.24
1/2" npt plug	McMaster 4464k564		12	\$2.70	\$32.40
1/4 FNPT union	5078k92	gauge and transducer connections	4	\$1.50	\$6.00
1/4 push lok Tee	5779k34	gauge and transducer connections	2	\$4.88	\$9.76
3/8 npt to 1/2 push lok	McMaster 5779k121		36	\$7.80	\$280.80
3/8 npt plug		for unused 3/8 npt openings	16	\$2.00	\$32.00
1/4" push lok union		for flow transducer connections	120	\$3.20	\$384.00
1/2 npt to 1/2 push loc		1/2" npt to 1/2" push lock	12	\$8.20	\$98.40
1/4" push lok caps		push lok cap for tubing	24	\$2.18	\$52.32
1/4" push lok plugs	McMaster 5779k54	push lok plug for fitting	24	\$1.18	\$28.32
1/4 pasirion piags	Wiciviaster 5775R54	pasti lok plag for fitting		γ1.10	Q20.32
1/4" tubing		guestimate of 40 ft per line	2400	\$0.48	\$1,152.00
1/4 (05)116	1/4" OD x 3/16 ID	Successifiate of 40 ft per line	2400	φυ. 10	ψ1,132.00
Tygon 1/4"	tygon	guestimate of 0.5 ft per line	25	\$0.98	\$24.50
1/2" tubing	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	guestimate of 40 ft per line	200	\$1.61	\$322.00
Panel supports		Succession of the feet mile	15	\$50.00	\$750.00
Tarier supports			13	\$1,500.0	\$750.00
misc			1	0	\$1,500.00
labels			1	\$450.00	\$450.00
Readback cables and elect	ronics		_	Ç 130.00	\$5,000.00
					43,000.00
		FMV System Estimate			\$11,616.68
		27000 200			Ţ,U_U.UU
		FMV plus FT System Estimate			\$21,969.96
		p			+==,505.55

Front Tracker U-V GEMs

Front Trackers GEM with U-V strips readout

Motivation:


- ⇒ The U-V GEM modules to complement the INFN Front Tracker GEM Layers which use COMPASS 2D cartesian strip readouts.
- ⇒ The addition of U-V geometry enhances and complements the X-Y strips and will help with tracking in the high rate environment.

Key Features: active area: 150×40 cm², U-V strips readout (60°) stereo angle

- ⇒ New GEM foil technology allows for this new FT U-V GEM layer to be one single large module
- ⇒ **No dead area** from support frames or electronics (Other than for the frame spacers and HV sector boundaries)
- ⇒ The INFN-built MPD readouts for these GEMs will be the same as for all SBS GEMs

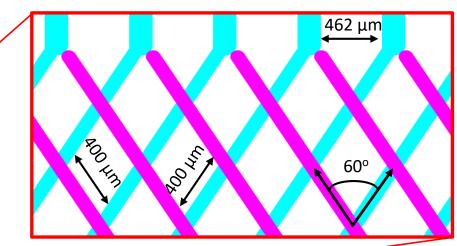
Our Experience: UVa has a successful track record with large area GEMs and U-V readout

- ⇒ Large GEM with PRad Experiment (June 2016 in Hall B), similar size ⇒ but PRad more far challenging to build
- ⇒ U-V strip readouts with large U-V GEM prototypes for the EIC Forward GEM Trackers Detector R&D

Front Tracker U-V GEMs: 2D readout with U-V strips

U-V Strip readout design:

⇒ U and V pitch of 400 μm, Vertical pitch: 462 μm

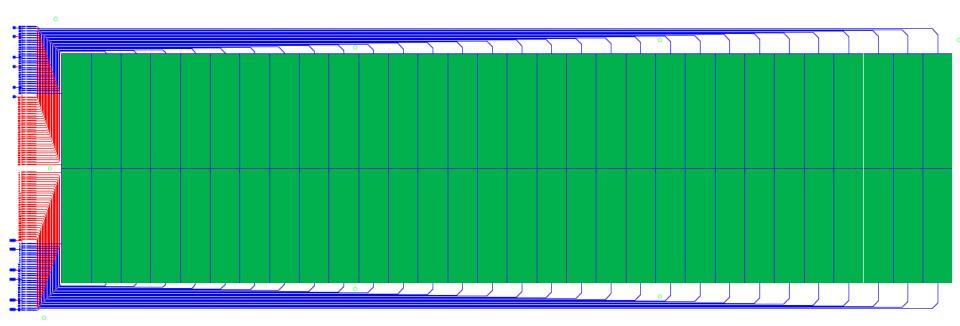

⇒ top (U-) strip: **80: μm**

⇒ bottom strips: 350 µm

⇒ About 7k e- channels per layer

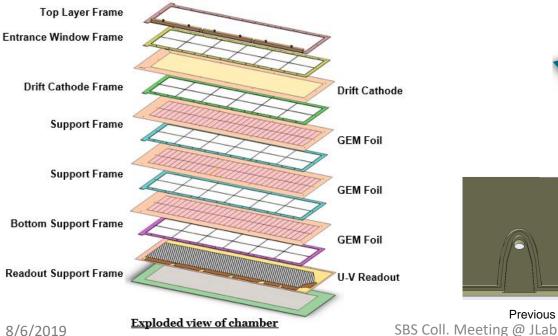
❖ Will rearrange connectors on the detector to have 4-slots only

❖ Avoid HDMI 5th data lines & reduced number of HDMI cable



Front Tracker U-V GEMs: GEM foil Design

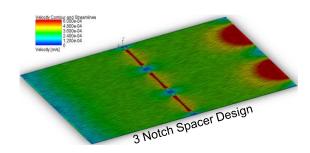
- ⇒ GEM foil will have segmentation on both side unlike previous large GEM chambers where only top Cu-electrode were segmented
 - ⇒ A short sector during operation would not make the whole layer inoperable ⇒ but only dead sector
 - ⇒ Limited voltage drop in the divider at high particle rate

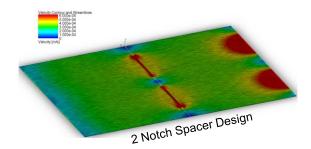


Front Tracker U-V GEMs: GEM Support Frame

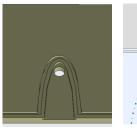
(John Boyd, UVa, see poster)

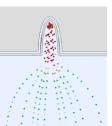
Design:

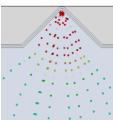

- frames constructed of Permaglass high-pressure fiberglass laminate
- ⇒ 6 frames have spacers which are 500 µm thick to provide uniform gap stability while also minimizing dead area.
- ⇒ Some spacers have notches in them to provide proper gas flow between different sectors.
- ⇒ Designed with a wide outer frame for added rigidity and support when fully assembled.



Flow Simulation:


CFD simulations and calculations performed to determine the best design for optimal gas distribution through the chamber.


Optimization of Gas inlet



Optimization of Spacer (notch) Design

Previous Gas Inlet design

New Gas Inlet design

Front Tracker U-V GEMs: Production Timeline

⇒ GEM and Readout foils (CERN)

- Design of GEM foil and R/O almost completed
- To do: Finalize the design ⇒ few more details to hash out and check compatibility with support frames design
- Green light CERN for production (min ~ 6 Months expected)

⇒ GEM frames (RESARM Belgium)

- Communication with RESARM ⇒ No problem fabricating frame of this size
- To do: Finalize the frame design and check compatibility with GEM foils
- Green light CERN for production (min ~ 3 Months expected)

⇒ Timeline of the two U-V GEM chambers assembly at UVa

- Foil Stretcher (Tooling and Clean Room Equipment): (12/2019)
- Two chambers Fabrication: (end 06/2020)
- Testing & delivery to JLab: (end 07/2020)

Front Tracker U-V GEMs: Contributing Institutes

⇒ 8 GEM foils (CERN) ⇒ total cost of CHF 14,400

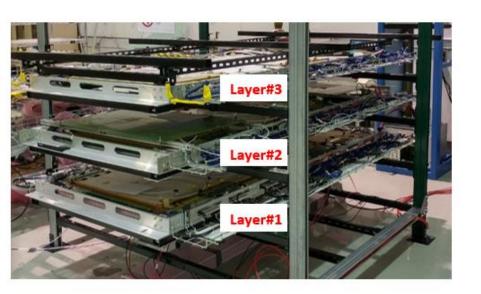
⇒ North Carolina Central University (Branko Vlahovic)

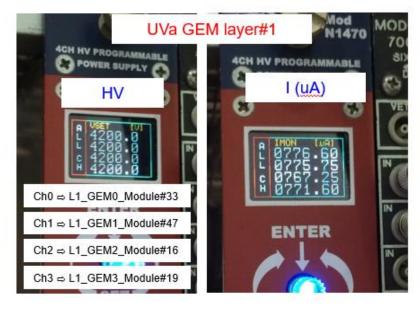
⇒ 2 U-V readout foil (CERN) ⇒ total cost of CHF 5,100 each

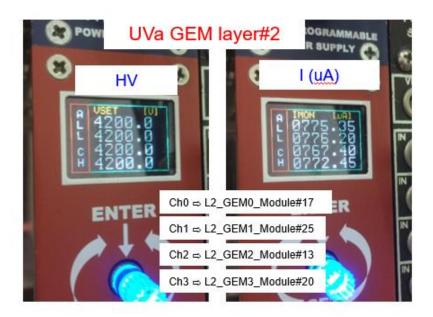
- ⇒ One by University of Connecticut (Andrew Pucket)
- ⇒ One by Glasgow University (David Hamilton)

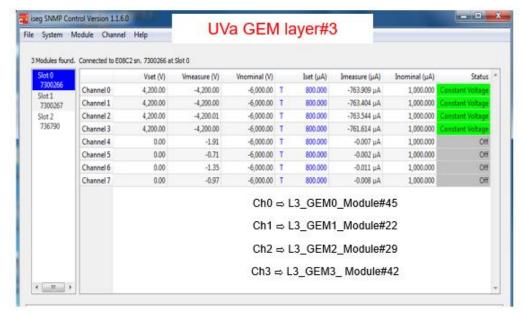
⇒ Layout and Tooling (CERN) ⇒ total cost of CHF 4,400

- ⇒ Saint Mary's University (Adam Sarty)
- ⇒ Support Frames (RESARM, Belgium) ⇒ Cost ? (waiting for a quote)
 - ⇒ INFN Rome (Evaristo Cisbani), Glasgow University (David Hamilton)
- ⇒ Clean Room Equipment, Tooling and Manpower for fabrication
 - ⇒ UVa (Nilanga Liyanage)



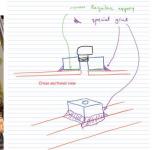

Back up


8/6/2019 SBS Coll. Meeting @ JLab 32



UVa GEMs: HV tests of UVa GEM lavers

UVa GEMs: Issues reported @ last sbs Coll. meeting


UVa GEMs: Some issues with gas oulet plastic piece

- Glue epoxy used for the gas output plastic pieces does not polymerize well with the plastic

 - Was removed from L1 to be fixed and replaced in the layer by another module M15
- Easy fix for this problem ⇒ We already identify a special glue (suitable for plastic
- For the most recent chambers that we built, we avoid the before, in order to have a strong adherence of the

\ to be used rfaces to be glued

SBS Coll. Meeting @ JLab 7/28/2019

UNIVERSITY VIRGINIA

UVa GEMs: Module 35 with high leakage current

- Module 35 has developed a higher than normal leakage current during cosmic data taking
 - Was Ok and tested with cosmic twice at line and also in EEL setup after the assembly
- . This is very similar to an issue that ha
- is good chance to
 - We will have to work on it later ⇒ Burn
- the chamber was also removed from .aced by another module
- · We will get high purity filter on the gas line to avoid the problem in the future
 - i just the input of each individual module
- Cosmic setup: It wou desirable to get N2 gas flushing continuously و

7/28/2019 SBS Coll. Meeting @ JLab

SBS Coll. Meeting @ JLab 8/6/2019

SBS / Bigbite GEM Electronics - components

Items	Need (SBS + BB)	In hand (Total)	Spares
MPDs (UVa GEMs)	77	61 (UVa) 11 (Glasgow U) 5 (JLab)	so far 2 (HU)
APV25 FE Cards (UVa GEMs)	968	900 (UVa) 100 (HU)	A few dozens
12-slots backplane (UVa GEMs)	44	42	
5-slots backplane (UVa GEMs)	88	82	
MPD (INFN GEMs)	24	26 (INFN: 19 at JLab, 2 at UH, 5 in Italy)	2 (INFN, in Italy)
APV25 FE Cards (INFN GEMs)	324	350 (INFN, 311 at JLab)	5 + few to be tested
Backplanes (INFN GEMs)	Flex: 24 Rigid: 48	all in hands at JLab	Flex: 4 Rigid: 7 + some to be retested

4 SSP modules (3 for SBS)

TI – Trigger supervisor

Master VME (for SSP and TI)

Trigger / clock fan-out (101 channels)

46 x HV cables (15 m?, 55 m? ...)

6 x LV cables pairs (15 m?)

SBS GEMs Electronic Hut

LV power supply

1 VME minicrate for slow control + Master

Short HDMI cables (+ spares): connected to the GEMs

78 Optical fiber MPD – SSP connection and tranceivers

HV power supplies for 46 channels (40 UVa GEMs + 6 INFN GEMs)

2 × 78 (+ 1) NIM cables trigger and clock distribution

Long HDMI cables (374 + 14 spares): to the MPDs

4 VME64x / VXS (for SSP, TI ...) (3 for SBS)

6 VME crate (no master) for MPDs (4 for SBS)

Item

University Virginia	SBS GEM Electronics - components

Status

3 in hand: 2 with UVa, 1 with Paolo (Italy)

Available (Alex) + spares

12 ordered (Alex)

Available (Alex)

In hand

In hand

hut)

42 channels

4th identified to be in Ben's hand in Hall A

3 VXS crate ordered (Alex) – How about the 4th one?

JLab custom boards (under test in EEL and Test lab)

30 optic fibers and 150 transceivers ordered (Alex)

To be produced / provided at JLab

To be identified / procured

To be identified / procured (1 from SBS GEM hut to electronic

In hand: 1 Wiener crate & 5 or 6 HV modules ? (8 ch. each) =>

To be procured: 1 spare crate + at least one more HV module

Available at Jlab, Currently used / tested in cosmic (+spare)

JLab Engineering - Spring 2019 (R. Wines & D. Hamilton's talk)

At least 6 in hand (Alex) + 3 more crates in RHRS as spares

UNIVERSITY VIRGINIA	SBS GEIVI Electronics - components

SBS Coll. Meeting @ JLab 8/6/2019 36