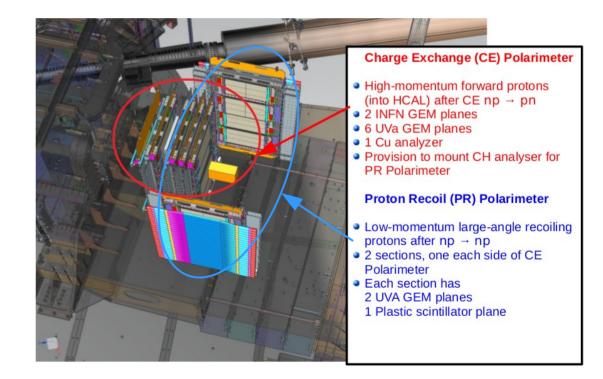
E12-17-004 GEn ERR Report Status Aug 6, 2019

E12-17-004 ERR Page

Brad Sawatzky

Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019



Ver. 1

Physics / Experimental Approach

- E12-17-004 will measure GEn/GMn using two recoil pol. techniques
 - \rightarrow "GMn" beam, beamline, target, BB
 - » Beam: ~11 GeV/c, ~40 μA
 - P_{beam} = ~80%
 - » Target: 10cm LD2 (unpolarized)
 - \rightarrow Charge-Exchange np \rightarrow pn channel (primary goal)
 - » Copper analyzer (passive)
 - » GEM tracking + HCAL measure forward protons
 - $\rightarrow \ \ Conventional \ np \rightarrow np \ (secondary \ goal)$
 - » Plastic analyzer (active)
 - » Large-angle recoil protons →
 Side detectors
 (GEM + hodoscope)
 - » Forward neutron \rightarrow HCAL

Approved for 108 PAC hours
 → ~ 9 Calendar days

Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019

E12-17-004 GEn ERR Charge (Summarized)

GEn ERR date: May 29, 2019

 \rightarrow Report received May 31

E12-17-004 ERR Page

- Experiment Overview
 - → Impact and integration with GMp (E12-09-019) run plan
- Outline Hardware Changes
 - → Identify new equipment beyond E12-09-019
 - → Outline SBS frame modifications
 - → Integration into DAQ and Slow Controls

- For the New Equipment:
 - \rightarrow Description / Design
 - \rightarrow Ownership / Responsibility
 - → Completion and Commissioning Schedule
 - » Personnel assignments
 - \rightarrow Radiation Considerations
 - \rightarrow Safety Docs / Procedures

3

ERR Comments

- Comments
 - → Noted some uncertainty about scope of existing SBS/GMn documentation
 - We understand updates will be needed to cover add'l GEMs, and likely some new OSPs for hodoscopes and active analyzer.
 - → Suggested all remaining procurements be collected into an internal document for tracking purposes

- Comments (cont'd)
 - → "It would be a good idea to formulate a high rate test with the MPD and SSP DAQ hardware to fully test these devices as close as possible to the simulated rates of the experiment."
 - » Covered in response to Recommendation #5 (touch on this later)

Jefferson Lab

» Done.

ERR Recommendations

• There were 5 Recommendations:

- 1) Outline a plan and schedule to pursue realistic simulations of high-rate tracking performance in the presence of anticipated backgrounds, and to take advantage of any opportunities to validate the simulations using real data.
- 2) Update simulation geometries to the latest CAD model of the final installation and include fringe magnetic fields.
- 3) Obtain a written agreement with E12-09-019 which includes a high-level schedule showing how installation and deinstallation of all experiment hardware interleave with the run plans of the two experiments.
- 4) Provide an evaluation of the expected INFN GEM performance or present a plan for using alternate detectors.
- 5) Provide updated reports and expected performance evaluations for both UVa and INFN GEM detectors based on the most recent test results. Present a plan that assures the availability of detectors having suitable performance for the experiment.

- Outline a plan and schedule to pursue realistic simulations of high-rate tracking performance in the presence of anticipated backgrounds, and to take advantage of any opportunities to validate the simulations using real data.
- Extended response highlighting
 - → Tracking algorithms that are already implemented
 - \rightarrow Simulation work already completed
 - → Identifying existing cases where simulation has been verified against data
 - » PRad, UVa x-ray tests, etc
 - → Discussed existing simulations in more detail.
 - » SBS/BB sim
 - » GEn sim (Glasgow)
 - » GEn sim (NMU)

Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019

6

- Update simulation geometries to the latest CAD model of the final installation and include fringe magnetic fields.
- Geometry updates are complete
 - \rightarrow No major changes to code
 - → No major changes in results
- Some ongoing work integrating updated fringe field into models

 Obtain a written agreement with E12-09-019 which includes a high-level schedule showing how installation and deinstallation of all experiment hardware interleave with the run plans of the two experiments.

1 Installation

The G_M^n and G_E^n collaborations plan to have all components of the G_E^n polarimeter installed on the SBS carriage prior to beam operations.

1.1 Work/installation plans prior to taking beam

We plan to install and test these components in-situ on the SBS carriage prior to the run.

- All SBS GEM layers will be installed, cabled, and tested
- Both the right and left Recoil Proton detectors will be installed, cabled, and tested (GEM layers + hodoscope arrays)
- Glasgow active analyzer array will be installed, cabled and tested.

The following components only need to be "test fit" at some point during the pre-beam installation schedule, but will *not* be present for the start of G_M^n beam operations. Note that the test fit needs to be done with an SBS hardware configuration and angle that will be representative of the state during the midrun gmn to G_E^n transition so any interference / installation challenges can be identified and addressed well prior to beam.

- $\bullet~{\rm SBS}~rear$ field clamp
- Copper analyzer plate

1.2 Components to be removed prior to taking beam

The following G_E^n related hardware will be removed prior to the start of G_M^n beam operations. It should remain "staged" in the Hall so it can be efficiently reinstalled during the G_M^n to G_E^n transition period.

- SBS *rear* field clamp (if still present after test fit)
- Copper analyzer plate (if still present after test fit)
- Glasgow active analyzer array (cables will disconnected and left coiled on the carriage for rapid reconnection during the G_M^n to G_E^n transition).
- SBS GEM MPD cards (cabling will be left in place for rapid reconnection during the G_M^n to G_E^n transition).
- NOTE: Gas flow to all SBS GEMs will be maintained at a some level to help keep the GEM humidity levels stable.

1.3 Note on impact of G^n_E RP detectors on G^n_M minimum SBS angle

Both the right and left Recoil Proton detectors will be left in place on the SBS carriage. This limits the SBS angle setting to $> 24^{\circ}$ until after the G_E^n program is complete. Organizing the run plan to accommodate this is covered in the **Run Plan** section that follows.

Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019

Recommendation 3 ... cont'd

 Obtain a written agreement with the E12-09-019 which includes a high-level schedule showing how installation and deinstallation of all experiment hardware interleave with the run plans of the two experiments.

(nominal 1 shift)

2 Run Plan

E12-17-004 has been approved for 120 PAC hours, or a nominal 10 calendar days at the typically assumed 50% efficiency. Of those 120 PAC hours, 12 PAC hours (or a nominal 3 calendar shifts) have been allocated to overhead associated with $G_{\rm E}^{\rm n}$ -related configuration changes.

- 1. G_M^n Begin G_M^n production with kin X, Y, Z at angles a, b, c.
 - Final kinematic in this subset will match the $G_E^n Q^2 = 4.5 (GeV/c)^2$ configuration.
- 2. Install the GEn specific components
 - Install shielding in the beamline dipole cutout (if this is not already in-place).
 - Install field clamp.
 - Install Copper analyzer plate.
 - Install Glasgow analyzer as needed.

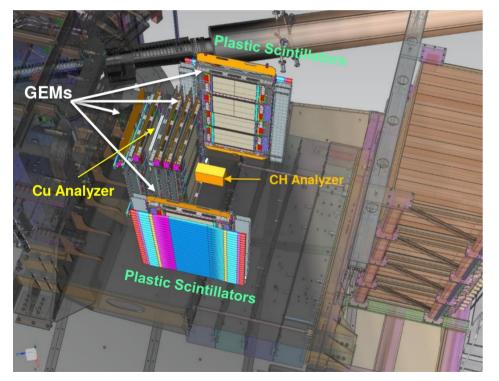
3. Run GEn measurement

(96 PAC hours; 9 calendar days)

4. De-install GEn components

 $(nominal \ 1 \ shift)$

- Remove field clamp (Techs, crane).
- Remove Copper analyzer plate (Techs, crane).
- Remove Glasgow analyzer (Collaboration).
- Disconnect cables from the beamline side (left) Recoil Proton detector assembly (Collaboration).
- Remove beamline side (left) Recoil Proton detector from SBS stand (Techs, crane).
- The right-side RP detector can remain or be craned off as desired.


Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019

9

• Provide an evaluation of the expected INFN GEM performance or present a plan for using alternate detectors.

- Two fallbacks to be explored, if needed:
 - → Evaluate <u>veto</u> efficiency of "as-is" 3 layer (INFN+INFN+UVa) upstream triplet.
 - » Do not need tracks, just a charged veto for GEn.
 - → Shuffle one or more GEM UVa layers from RP assemblies into upstream triplet instead.
 - » No tracks from side GEMs alone, but will still augment x,y coord from hodoscope
 - » Vertex provided by segmented active analyzer

Thomas Jefferson National Accelerator Facility SBS Collaboration Meeting • Aug 5–6, 2019

- Provide an evaluation of the expected INFN GEM performance or present a plan for using alternate detectors.
- Provide updated reports and expected performance evaluations for both UVa and INFN GEM detectors based on the most recent test results. Present a plan that assures the availability of detectors having suitable performance for the experiment.
- Extended response has been drafted by <u>Nilanga</u>, Kondo, Michael, et al.
 - →2-page summary in ERR response document
 - → Complete report will be included as an Addendum
 - \rightarrow Too much to discuss here
 - » See dedicated GEM talks and final report

Still to be done...

- Remove "Draft" from a few items
 - →ie. Installation/Run-plan agreement letter
 - → Fill in a few minor details tagged in ERR response document.
- Finalize GEM report for Appendix

- Timeline (ASAP)
 - → Beam Request Submission deadline: Aug 16
 - » ERR Committee sign-off is a prerequisite
 - → Response must be submitted to ERR Committee this week
 - » Hoping for Wednesday, Aug 6

Backup / Misc. Slides

