Data Science and Femtography

Peter Alonzi, UVA, Data Science Institute

CNF2019 Symposium, SURA Headquarters

CNF19-14: Sponsored by Southeastern Universities Research Association, Inc. Grant Agreement No. C2019-FEMT-002-04

August 12 and 13, 2019, Washington DC

Summer Institute for Wigner Imaging and Femtography

- 1. Data Science enhances Physics
- 2. UVA Data Science
- 3. Interdisciplinary development
- 4. Machine Learning applications

Data Science and Physics

- Data science craves data \rightarrow scaleable to petabytes and beyond
- Build models and test hypotheses \rightarrow scientific method
- Machine learning uses probabilities \rightarrow natural fit for quantum systems

$\langle DataScience | Physics \rangle \approx 1$

Data Science at UVA

"An interdisciplinary field that uses scientific methods to extract knowledge and insights from data."

- School of Data Science plans announced
- Mandate for Interdisciplinary efforts
- Today: ~50 MSDS students per cohort
- Tomorrow: PhD students

Phil Bourne, Director, Data Science Institute

Data Science at UVA

"An interdisciplinary field that uses scientific methods to extract knowledge and insights from data."

- Data management
- Communication
- Visualization (don't miss VR demo!!!)
- Machine learning

Phil Bourne, Director, Data Science Institute

Defining a machine learning problem

- 1. Physicists provide the data
 - a. Data scientists do not know how to propagate errors (still ad hoc)
- 2. Data scientists apply a machine learning model
 - a. Physicists do not know the capabilities of ml tools (selection is hard)
- 3. Physicists define the loss function
 - a. Data scientists struggle to get the algorithms to converge (tuning and training takes time)
- 4. Data scientists provide a trained model to predict physics analysis goals
 - a. The scientific community does not know how to explain ml models (for cutting edge ml)

Machine learning solution - Supervised Learning

$x_{Bj}, t, Q^2, k\theta, \phi, L, \sigma, error$

Implemented in Tensorflow

- Cutting-edge deep learning framework
- Automatic differentiation
- Runs on GPUs for amazing speed
- Large Open-source community

Training is like collapsing the wave function.

Result of ML pipeline - (tuning and training underway)

difference in predictions between multiple neural networks.

Result of ML pipeline - (tuning and training underway)

difference in predictions between multiple neural networks.

Up Next: Unsupervised machine learning

Uniform Manifold Approximation and Projection (UMAP)

- Cluster GPDs into lower dimensions (2D/3D)
- Manifold learning algorithm
- Akin to: t-SNE and PCA (dimensionality reduction)
- Enable visualization of high dimension data

Summary

- Students now proficient in interdisciplinary collaboration
- Built an integrated pipeline with Tensorflow to predict CFFs and cross sections

- Unsupervised dimensionality reduction algorithm is in development
 - After publication will release software as an Open-source project