

Electron Ion Collider and Femtography Science

Charles E. Hyde Department of Physics Old Dominion University

A Brief Pre-History of Femtography: I.

- 1911: Rutherford, Geiger, Marsden: Discovery of atomic nucleus
- 1920s Measurement of nuclear radii by (non-relativistic) α -scattering
 - Maximum radius for deviation from Coulomb Scattering: $R(A) \approx (1.4 \text{ fm})A^{1/3}$
- 1955: Hofstadter: Elastic scattering of relativistic electrons
 - Charge distributions of nuclei: R(50%) = (1.07 fm)A^{1/3}
 - Proton *rms* radius (1955) = (0.78±0.24) fm
 - 2014 CODATA value 0.879(11) fm excluding 5 σ μ H 0.84169(66) fm
 - 2019 value *(ep* reanalysis) : 0.844(7) fm (JLab, MAMI)
- 1970s: Precision charge densities of nuclei
- 1990s: (JLab) Proton charge and magnetization densities unequal

A Brief Pre-History of Femtography: II.

- Folklore: Elastic electron scattering on proton, H(e,e')p measures 3-D Fourier transform of spatial charge density, with ill-defined relativistic corrections due to proton recoil :
 - initial state ≠ final state, Boosts do not commute with dynamics
 - Not a problem for nuclei heavier than He
- 1978: Gunion & Soper: Relativistic covariant analysis:
 - H(e,e'p) measures 2-D Fourier transform of charge density, after integrating over `longitudinal' coordinate.
 - Generally ignored.
- 1970s: 1-dimensional momentum distributions of quarks in proton
 - Deep Inelastic Scattering → Parton (quark, gluon) Distribution Functions (PDFs)
- 1980s: European Muon Collaboration (EMC): PDF(Nuclei) ≠ PDF(nucleon)⊗A

A Brief History of Femtography: I

- Light Cone variables: $P^{(t,x,y,z)} \rightarrow P^{(+,\perp,-)}$ $P^{\pm} = \frac{1}{\sqrt{2}} (E \pm cP^z), \quad \mathbf{P}_{\perp} = c(P^x, P^y)$
 - High energy reactions define a preferred longitudinal axis z.
 - Mixed coordinates: light cone momentum *p*⁺, transverse spatial coordinates **b**.
- H(e,e')X → distribution of parton (quark, gluon) light cone momentum fraction
- 1994 Definition of Light-ray operators
 - Quantum amplitudes for a parton transition $[(x+\xi)P^+, \mathbf{b}] \rightarrow [(x-\xi)P^+, \mathbf{b}]$
- 1996:
 - Deep Virtual Exclusive Scattering: $ep \rightarrow ep\gamma$, as well as $ep \rightarrow ep$ hadron
 - At sufficiently large $(Q^2, q \cdot P)$, \rightarrow Generalized Parton Distributions GPD(x, ξ , t; Q²): Variables (ξ , t; Q²) are kinematic, determined by experiment

Digression: $e_p \rightarrow e_p \gamma$ From Scattering to Femtography

• $\Delta_{\perp} = (\mathbf{q} - \mathbf{q'})_{\perp}$, Fourier conjugate to impact parameter **b**

CNF-SURA Symposium, C. Hyde

Structure (Complications) of GPDs

- Two quark (Dirac) operators: $(\gamma^+, \gamma^+\gamma_5)\otimes$ (proton helicity flip or non-flip)
 - Four GPDs (real functions): $[H, \tilde{H}, E, \tilde{E}](x, \xi, \Delta^2; Q^2)$
 - Gluon and quark-flavor, e.g. $H \rightarrow H_g$, H_u , H_d , H_s ...
 - Q^2 -dependence exactly described by perturbative QCD \rightarrow mixes flavor \otimes gluon
- Experiments measure Compton Form Factors (CFFs) not GPDs

•
$$\mathcal{H}(x,t;Q^2) = \int_{-1}^{1} dx \, H(x,\xi,t;Q^2) \left[\frac{1}{x-\xi+i\epsilon} - \frac{1}{x+\xi+i\epsilon} \right]$$

- For Q² < 10 GeV² important corrections to cross sections from more complicated quark-gluon correlation operators
 - Deep Virtual Meson Production: electron + nucleon → electron + baryon + meson.
 For Q² < 20 GeV² important corrections to cross sections from more complicated quark-gluon correlation operators

A Brief History of Femtography: II

- 2001 First published data (polarized electrons)
 - HERA 27.5 GeV *e ⊗* 920 GeV *p* (shutdown 2007)
 - HERA-HERMES 27.5 GeV $e^{\pm} \otimes$ H, D-jet
 - JLab-CLAS
- 2012 COMPASS 160 GeV $\mu^{\pm} \otimes p$
- 2004 2012 JLab 6 GeV, long. pol. *p,d*
- 2014 Start of JLab 12 GeV: H(e,e' γ)p, H(e,e' π ⁰)p Hall A
- 2017 Start of CLAS12
 - H(e,e' γ p), H(e,e'Vp): V = ρ , ϕ ,J/ Ψ
- 2021 CLAS12 Longitudinally polarized p, d targets

CENTER for

NUCLEAR FEMTOGRAPHY

Tomography Results [Model-Dependent]

CENTER for

NUCLEAR FEMTOGRAPHY

8/12/2019

The Proton Isn't Round

- Proton spin s polarized (statistically)
 ⊥ to *light-cone* direction z
 - Up and down quarks separate in direction $\hat{s} \times \hat{z}$
 - Average separation dictated by anomalous magnetic moments of *p*,*n*
- Transverse *p* polarization
 - Difficult in fixed target
 - Natural in collider

The Electron Ion Collider

- JLEIC or eRHIC
- Mission Need Statement from DOE expected by Oct 2019
 - `Other Project Costs' requested in FY2020 budget
- T. Hallman (DOE Nuclear Physics) @ EIC Users Group Meeting, Paris France July 2019:
 - "Implementation review" aka down-select process started, decision "soon" by Paul Dabber, Under-Secretary of Energy for Science
 - <u>"The EIC will be one of the most complex and sophisticated collider</u> <u>accelerators ever built"</u>

Why Another Collider?

- 100 \rightarrow 1000 higher luminosity than HERA
- First ever *eA* with nuclei > proton
- First ever with polarized p, d, ³He... beams
 - Longitudinal and transverse
- First ever with nearly-hermetic forward-detection (electron and ion) designed into Machine-Detector-Interface (MDI)
 - `Detector' is 100 m long
 - Tag spectator & active nucleon(s) for femtography on nearly free neutron in d, ³He

- Full-energy top-up injection of highly polarized electrons from CEBAF ⇒ High electron current and polarization
- Full-size high-energy booster ⇒
 Quick replacement of colliding ion beam ⇒
 High average luminosity
- High-rate collisions of strongly-focused short low-charge low-emittance bunches similarly to record-luminosity lepton colliders ⇒ High luminosity
- Multi-stage electron cooling using demonstrated magnetized cooling mechanism ⇒
 Small ion emittance ⇒
 High luminosity

- Figure-8 ring design ⇒
 High electron and ion polarizations, polarization manipulation and spin flip
- Integrated full acceptance detector with far-forward detection sections being parts of both machine and detector
- Upgradable to 140 GeV CM by replacing the ion collider bending dipoles only with 12 T magnets

Courtesy A.Seryi, V.Morozov

eRHIC

Hadrons up to 275 GeV

- eRHIC will use the existing RHIC complex: Storage ring (Yellow Ring), injectors, ion sources, infrastructure,
- Need only few modifications for eRHIC
- Todays RHIC beam parameters are close to what is required for eRHIC

• Electrons up to 18 GeV

- Electron storage ring with up to 18GeV installed in RHIC tunnel. → E_{cm} = 20 GeV -141 GeV.
 Electron beam current limited by the choice of installed RF power 10 MW.
- Electron beams with a variable spin pattern accelerated in the on-energy, spin transparent injector: Rapid Cycling Synchrotron with 1-2 Hz cycle frequency in the RHIC tunnel
- Polarized electron source and 400 MeV s-band injector linac in existing tunnel
- Design meets the high luminosity goal of $L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Courtesy F. Willeke

Deuteron

Polarization

difficult.

Not impossible

Femtograpy @ EIC: DVCS on proton

- Tagging the recoil protons over the full momentum range is essential for precision imaging
- Repeat with L & T polarized beam
- Repeat with polarized D(e,e'p_sγn)

eRHIC Simulations (within JLEIC acceptance)

Other Spatial Femtography topics at JLab & EIC

- $eN \rightarrow eN \phi$, $eN \rightarrow eN J/\Psi$: Gluon Densities
- Nuclei: Longstanding questions about neutron vs proton radii of nuclei with A>2Z
 - Relevant to structure of Neutron Stars
 - Equivalent to questions of up-quark vs down-quark radii
- Tomography of excited states of the nucleon
- Strange quarks: $ep \rightarrow eK^+ \Lambda$

Femtography topics I have ignored: Transverse Momentum Densities

- Semi-Inclusive Deep Inelastic Scattering (SIDIS)
 - $ep \to e_K^{\pi} X$
 - TMD(x,p₁): Unfold intrinsic transverse momentum of quark in nucleon from measurement of perpendicular component of momentum of final state meson. Q², q • P, M_X² all large
 - Easier to measure than GPDs.
 - Harder to interpret than GPDs

Femtography topics I have ignored: Quark-Gluon Wigner Functions

- *W_{f,g}(x,b,p*_)
- Complete Phase space distribution of single quarks and gluons
- Theory in infancy
- Experiment in pre-infancy
 - $e + p \rightarrow e + p + di-jet$

Extremely schematic

Conclusions

- We (nuclear + accelerator physicists) have a lot of work to do.
- We need your (data science, machine learning, A.I. scientists) help.
- Some examples:
 - Femtography with sparse data, inversion ill-defined
 - Particle track reconstruction in noisy, sometimes ambiguous data
 - Particle Identification
 - Convert raw signals into decisions: this was an electron, a pion, a kaon, a proton, a gamma-ray, or a neutron.

• The time is now.

- Detectors designs must be complete in 4 years
- Data will start in 10 years

Backup

Commission the glass studio at the Chrysler Museun in Norfolk to make us a nucleus (or proton)

Exclusive ϕ : **CLAS12** experiment

• *t*-dependence of 6 GeV ϕ data consistent with gluonic radius measured at high energies Extrapolation of HERA, FNAL J/ψ results

4

• CLAS12: Test reaction mechanism and harden GPD-based description

When does *t*-slope become independent of Q^2 ?

How does W-dependence change with Q^2 ?

L/T ratio from vector meson decay and $s\mathchar`-\mbox{channel}$ helicity conservation

• CLAS12: Extract *t*-dependence of gluon GPD at x = 0.2 - 0.5

Obtained from relative t--dependence of $d\sigma_L/dt$

First accurate gluonic image of nucleon at large x!

Key EIC Machine Parameters

as required by the NSAC LRP & NAS

Parameter	Unit	JLEIC	eRHIC
Center of Mass Energies	[GeV]	20-100 a)	20-140
Ion Species		p to U	p to U
Number of Interaction Regions		2	2
Hadron Beam Polarization		85%	80%
Electron Beam Polarization		80%-85%	80%
Maximum Luminosity	[10 ³⁴ cm ⁻² s ⁻¹]	1.55	1.3

a) upgradable to 140 GeV

Electron Ion Collider.

EIC Luminosity

inosity [fb⁻¹y⁻¹] Tomography (p/A), Transverse Momentum **Distribution and Spatial Imaging** JLEIC eRHIC Luminosity [cm⁻²s⁻¹] 100 Optimization 1034 for high E_{cm} **Spin and Flavor** Structure of 1033 eRHIC JLEIC the Nucleon and Nuclei Optimization Energy for E_{cm}=45 GeV **QCD** at Extreme Internal Upgrade **Parton Densities-**Landscape of 1032 Accumula **Saturation** the Nucleus 1031 80 120 40 Ω Center of Mass Energy [GeV]

Note: For electron ion collisions, the E_{cm} scale needs to be reduced by a factor $(Z/A)^{1/2}$

Electron Ion Collider.

NTER for

UCLEAR FEMTOGRAPHY

Strong Hadron Cooling Scheme for JLEIC

FEMTOGRAPHY

- Magnetized electron beam for higher cooling efficiency
- Cooling electron beam is energy-recovered to minimize power consumption
- 11-turn circulator ring with 1 amp of beam current relaxes electron source requirements
- Fast harmonic kicker to kick electrons in and out of the circulator ring
- Pre-cooling a low energy is essential to achieve the anticipated performance

bottom ring: ERL

Courtesy: V Morozov, A Seryi Electron Ion Collider.

The Proton Isn't Round

- Proton spin s polarized (statistically) ⊥ to *lightcone* direction z
 - Up and down quarks separate in direction $\hat{s} \times \hat{z}$
 - Average separation dictated by anomalous magnetic moments of *p*,*n*
- Transverse *p* polarization
 - Difficult in fixed target
 - Natural in collider

