
Bayesian Optimization for 
Experiment Design

Barnabas Poczos

Carnegie Mellon University

Machine Learning Department



www.autonlab.org

Computer vision, 

Robotics

Cosmology

2

AI in games

High Energy 

Physics

Art

Barnabas Poczos

Quantum 

ChemistryML in Agriculture

Material Science

EEG, fMRI, MEG, …



Contents

❑ ML on Sets / Point Clouds / Distributions

❑ Adversarial Neural Networks

❑ Bayesian Optimization

3



ML on Point Cloud Data  

4



www.juhokim.com/projects.php
Cristiano Ronaldo

Rio Ferdinand
Owen Hargreaves

Manchester United 07/08

Distributional Data

5



Distribution Regression / Classification 

Y1=1

P1

Y2=0

P2

?

Pm+1

Y3=1

P3

Ym=0

Pm…
❑ The inputs are distributions, density functions (not vectors)
❑ We don’t know these distributions, only sample sets are available
❑ The sizes of the sets can be arbitrary and all different

Differences compared to standard methods on vectors

6



Using

Estimate divergence

RÉNYI DIVERGENCE ESTIMATION

without density estimation

Distances / Divergences between Distributions
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The Estimator

8



Applications



High Energy Physics 

End-to-End Event Classification
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Find new scientific “laws” in physics

Goal: Estimate dynamical mass of galaxy clusters.

Importance: Galaxy clusters are being the largest gravitationally bound systems in the Universe. Dynamical 
mass measurements are important to understand the behavior of dark matter and normal matter.

Difficulty: We can only measure the velocity of galaxies not the mass of their cluster. Physicists estimate 
dynamical cluster mass from single velocity dispersion.

Our method: Estimate the cluster mass from the whole distribution of velocities rather than just a simple 
velocity distribution. 11



Find new scientific laws in physics

Michelle Ntampaka et al, A Machine Learning Approach for Dynamical Mass Measurements of 
Galaxy Clusters, APJ 2015
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Find the parameters of Universe
Given a distribution of particles, our goal is to 
predict the parameters of the simulated universe 
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B. Póczos, L. Xiong & J. Schneider, UAI, 2011.

What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly
❑ star forming blue galaxies
❑ irregular galaxies

Sloan Digital Sky Survey (SDSS)
❑ continuum spectrum 
❑505 galaxy clusters  

(10-50 galaxies in each) 
❑7530 galaxies

Find interesting Galaxy Clusters

Blue galaxy Red galaxy

Credits: ESA, NASA  
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Finding Vortices in Simulated Fluid Flow 

Classification probabilities 15



Find Interesting Phenomena in Turbulence Data

Anomaly scores

Anomaly detection 
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Lidar Point Cloud



Agriculture  
Recommend experiments (which plants 
to cross) to sorghum breeders.
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Surrogate robotic system in the field
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Surrogate robotic system in the field

The surrogate system collecting data at the TAMU field site. The carriage supports two boom assemblies each 

one of which carries a sensor pod. The carriage slides up and down on the column allowing full scanning of a 

plant.
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Name Range RMSE error

Leaf angle* 75.94 3.30 (4.35%)

Leaf radiation angle* 120.66 4.34 (3.60%)

Leaf length* 35.00 0.87 (2.49%)

Leaf width [max] 3.61 0.27 (7.48%)

Leaf width [average] 2.99 0.21 (7.o2%)

Leaf area* 133.45 8.11 (6.08%)
21



Emerging images

Niloy J. Mitra, 2009 22



Emerging images

Niloy J. Mitra, 2009
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Generative Adversarial Networks  



Generating Adversarial Networks
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Generated fake celebrity images

Tero Karras, Timo Aila, Samuli Laine, ICLR 2018

Generated fake 
living room images





Machine Learning 
and Art



Ravanbakhsh, M., Lanusse, F., Mandelbaum, R., Schneider, J., and Poczos, B., AAAI 2017 
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Point Cloud GAN

For each object, from left to right is training data, Auto Encoder competitor, and PC-GAN. PC-GAN is better 
in capturing fine details like wheels of the airplanes or proper chair legs.
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Theory of Generative Adversarial Networks

with the goal of solving:
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Statistical Results

Then the GAN is consistent and minimax optimal

Under some conditions

31



Open Questions

o Statistical properties under less restrictive conditions?
o Results for convolutional neural nets?
o Best way for training GANs (i.e best way for solving the minmax optimization)?
o GANs on manifolds?
o Rare event generation?
o Generate uniform distribution on the support of the data?
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Experiment Design



Experiment Design

Given a collection of results from past experiments, recommend new experiments to run.

▪ some experiments are expensive (time, money) and high-quality, some are 

cheap and low-quality. 

▪ consider costs and expected information gain

Code available: https://github.com/dragonfly/dragonfly
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Gaussian Processes
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Why GPs for Regression?

Motivation:

All the above regression methods give point estimates only. We would like a method that could 

also provide “confidence” during the estimation.

Regression methods:

Linear regression, support vector regression, kNN regression, deep neural networks, etc… 
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Sampling from GP: We can also use GP the generate samples from the posterior (red, blue, green)
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Results: Sin function
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Properties of Multivariate Gaussian Distributions
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Marginal and Conditional distributions of Gaussians are Gaussian
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Gaussian Processes
Definition: (Gaussian Processes)

GP is an (uncountably infinite) collection of random variables, s.t. any finite 
number of them have a joint Gaussian distribution

Notations:
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Gaussian Process Pseudo Code
Inputs:
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Outputs:

Gaussian Process Pseudo Code (Continued)
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Results: Sinc function
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Take me home!

GPs can be used for 
▪ nonlinear regression 
▪ can provide “confidence” of the estimate
▪ and can sample from the posterior distribution of regression 

functions
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GP Application: 
Bayesian Optimization
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❑ Bayesian optimization (BO) is a popular recipe for 
❑ optimizing expensive black-box functions 
❑ where the goal is to find a global maximizer of the black-box objective function
❑ We don’t even need to know the gradient of the objective function 

❑ Bayesian optimization has been used for a variety of practical optimization tasks such as
❑ hyperparameter tuning for machine learning algorithms, 
❑ experiment design, 
❑ online advertising, 
❑ …

❑ Often heuristics only
❑ Big gaps in our theoretical understanding …

▪ Convergence rate?
▪ Dependence on dimension?

Bayesian Optimization



Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization with Thompson Sampling
Goal: maximize function f using the results from previous experiments.
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Bayesian Optimization

Other criteria for selecting xt :
❑Upper Confidence Bounds (Srinivas et al. 2010)
❑Expected improvement (Jones et al. 1998)
❑Probability of improvement (Kushner et al. 1964)
❑Entropy search (Hernandez-Lobato et al. 2014, Wang et al. 2017)
❑. . . and a few more.

Bayesian models for f :
❑Gaussian Processes (most popular)
❑Neural networks (Snoek et al. 2015)
❑Random forests (Hutter 2009)
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Bayesian Optimization with Upper Confidence Bounds
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Goal: maximize function f using the results from previous experiments.



Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Gaussian Processes with Upper Confidence Bounds
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Take me home!

Bayesian Optimization can be used for function optimization
▪ When function evaluation is expensive
▪ Gradient is not available
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Recommend experiments for creating better batteries

Goal: perform autonomous experimentation on electrolyte/electrochemically functional material 

combinations based on feedback from previous experiments.

Machine Learning Unified Synchronous Experimentation (MUSE): Rapid Autonomous Discovery/Optimization 

of Electrode and Electrolyte Materials (joint project with Jay Whitacre & Venkat Viswanathan)
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Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)
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Solvation energy, viscosity, max conductivity

Setting

Example:



Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)
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(Experiment parameters, results of experiments)

(predicted error after trying 
the experiment with parameters x)



Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)

Action space X:  proportion of two solvents EC and EMC, molarity of the salt LiPF6, and T temperature
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Goal: Recommend settings for wire cutting machines

Manufacturing: Recommend parameter settings for machines
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parameter space 

Find the True Parameters of the Universe

hypothetical

parameters, 

simulated

observations

Hypothesis tests, MSE 

likelihood: 
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Question: How to search the parameter space?

g()

surrogate function

Solution: Learn a surrogate function and make 

experiment decisions using it 74



Multi-fidelity optimization
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Multi-fidelity optimization

Example:
f: expensive target function
f1:cheap computer simulation 
f2:cheap lab experiment
f3:expensive lab experiment
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Likelihood function: Robertson-Walker metric (Requires numerical integration). 

Multi-fidelity:

We construct a p = 2 dimensional multi-fidelity problem where we can choose between 
▪ data set size N ∈ [50, 192]
▪ and perform the integration on grids of size G ∈ [10^2, 10^6] via the trapezoidal rule. 

As the cost function for fidelity selection, we used λ(N, G) = NG as the computation time is linear in both parameters

Multi-fidelity application:
Astrophysical Maximum Likelihood Inference

Data: We use Type Ia supernova data for maximum likelihood inference on 3 cosmological parameters: 
▪ the Hubble constant H0 ∈ (60, 80), 
▪ the dark matter fraction ΩM ∈ (0, 1) 
▪ and dark energy fraction ΩΛ ∈ (0, 1), 
hence d = 3.
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We plot the maximum average log likelihood against wall clock time as that is the cost in this experiment. 

The plot includes the time taken by each method to tune the GPs and determine the next points/fidelities for 
evaluation.

Bayesian Optimization with Continuous Approximations 
(BOCA)

We compare BOCA to the following four baselines: 
I. GP-UCB, 
II. the GP-EI criterion in BO (Jones et al., 1998), 
III. MF-GP-UCB (Kandasamy et al., 2016a) 
IV. and MF-SKO, the multi-fidelity sequential kriging 

optimisation method from Huang et al. (2006).
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Multi-fidelity application:
Astrophysical Maximum Likelihood Inference



Neural Architecture Search with Bayesian Optimization and Optimal Transport

Multi-fidelity learning: Training a neural network on large dataset is very expensive, but sometimes cheap 
approximations are available.

Optimized neural network architecture on CIFAR 10 dataset
79



Neural Architecture Search

The first row gives the number of samples N and the dimensionality D of each dataset in the form (N, D). 

The subsequent rows show the regression MSE or classification error (lower is better) on the test set for each 
method. 

The last column is for Cifar10 where we took the best models found by each method in 24K iterations and trained it 
for 120K iterations. When we trained the VGG-19 architecture using our training procedure, we got test errors 
0.1718 (60K iterations) and 0.1018 (150K iterations)

RAND: random search; EA (Evolutionary algorithm): TreeBO: a BO method which only searches over feed forward structures.
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Take me home!

Methods for Multi-fidelity optimization
▪ Applications in Cosmology, Neural Network Search
▪ Code available
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Many real world applications can be framed as multi-objective optimization problems, where 
we wish to simultaneously optimize for multiple criteria (multi-objective optimization).

❑Classification: max True positive rate, max True negative rate, min False positive rate, min 
False negative rate, min computation cost, fast decision, min energy, min memory usage, 
min hard drive storage…

❑Drug discovery: each evaluation of the functions is an in-vitro experiment
▪ measure the solubility, toxicity and potency of a candidate example. 
▪ Goal: max solubility, max potency, min toxicity, min experiment cost. 

Multi-objective optimization
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Multi-objective optimization

❑Goal: recover (some part of the) Pareto front of these objectives with minimum number of experiments.

Goal: Maximize Objective 1 and Objective 2
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Brighter colors were sampled in the later iterations

Multi-objective optimization. Results:
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Take me home!

Bayesian Optimization based algorithm for multi-objective optimization
▪ Code is available!
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Experiment Recommendation
for Efficient Posterior Estimation
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Query Efficient Posterior Estimation in Scientific Experiments via Bayesian Active Learning
Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos
Artificial Intelligence Journal, 2017



❑ Our goal is an efficient way to estimate posterior densities as functions when calls to 
this black box / simulators are expensive. 

❑ Several cosmological phenomena are characterized by the cosmological parameters (e.g. 
Hubble constant, dark energy fraction). 

❑ Given observations, we wish to make inferences about the parameters. 

❑ Physicists have developed simulation-based probability models (= black box) of the 
Universe which can be used to compute the likelihood function of cosmological 
parameters for a given observation.

Posterior Estimation
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Likelihood of the Parameters of the Universe
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Goal:

Active Posterior Estimation

Posterior distribution:
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Goal:

Ideal Greedy Parameter Selection:

Training data:

Unknown!

Active Posterior Estimation
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Utility Function Based Active Posterior Estimation



Training data:

Negative Expected Divergence (NED)
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▪ Ideally we should choose the point that results in the highest reduction in divergence 
if we knew the likelihood and the true posterior at that point. 

▪ In NED, we choose the point with the highest expected reduction in the divergence.

Ideal greedy experiment recommendation:

Negative Expected Divergence



Training data:

Negative Expected Divergence

Negative Expected Divergence
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Negative Expected Divergence
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Negative Expected Divergence
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Experiments on Synthetic Data

▪ 100 points chosen in order by NED for a synthetic 2D experiment. 
▪ The green contours are the true posterior. 
▪ Initially the algorithm explores the space before focusing on high probability regions.
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Experiments on Synthetic Data

Comparison of NED/EV against MCMC-DE, ABC, MCMC-R and RAND for a 1D synthetic example

KL divergence between 
the estimated posterior 
and the true posterior



We use supernovae data for inference on 3 cosmological parameters: 

• Hubble Constant (H0 ∈ (60, 80), 
• Dark Matter Fraction ΩM ∈ (0, 1)
• Dark Energy Fraction ΩΛ ∈ (0, 1). 
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Estimating Cosmological Parameters using Type-1 Supernovae data

The likelihood for the experiment 
is given by the Robertson– Walker 
metric which models the distance 
to a supernova given the 
parameters and the observed red-
shift. 

KL was approximated via numeric integration.

Dataset is taken from: T. M. Davis et al. Scrutinizing Exotic 
Cosmological Models Using ESSENCE Supernova Data 
Combined with Other Cosmological Probes. 
The Astrophysical Journal, pages 716–725, 2007.
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Estimated Posterior Distributions

Projections of the points selected by EV (bottom row) and the marginal distributions (top row).



Thanks for your Attention!
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