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ML on Point Cloud Data



Distributional Data
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Distribution Regression / Classification

Y,=1 Y,=0 Y,=1 Y =0 ?
| 1 | !

Differences compared to standard methods on vectors

M The inputs are distributions, density functions (not vectors)
[ We don’t know these distributions, only sample sets are available
M The sizes of the sets can be arbitrary and all different
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Distances / Divergences between Distributions

Euclidean: D(p,q) = (J(p(z) — q(a))2da)1/2

Kullback-Leibler: D(p,q) = KL(p,q) = fp(a:') log pgmgdaz

Renyi: D(p,q) = Ra(p|lq) = == log [ p®qt~«

RENYI DIVERGENCE ESTIMATION
without density estimation o

o)

Using Xl;n={X1,..-,Xn}Np Yl:m:{Yla"'aym}Nq

Estimate divergence Ra(qu) o - 1 . 109 /paql—a




The Estimator

R 2 M k=2

k> 1, fixed.
pr(i) . the distance of the k-th nearest neighbor of X, in X1,
vi.(7) : the distance of the k-th nearest neighbor of X; in Y7,
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Applications



High Energy Physics
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Find new scientific “laws” in physics

. i .

Goal: Estimate dynamical mass of galaxy clusters.

Importance: Galaxy clusters are being the largest gravitationally bound systems in the Universe. Dynamical
mass measurements are important to understand the behavior of dark matter and normal matter.

Difficulty: We can only measure the velocity of galaxies not the mass of their cluster. Physicists estimate
dynamical cluster mass from single velocity dispersion.

Our method: Estimate the cluster mass from the whole distribution of velocities rather than just a simple

velocity distribution. H



Find new scientific laws in physics

Test Catalog
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Michelle Ntampaka et al, A Machine Learning Approach for Dynamical Mass Measurements of
Galaxy Clusters, APJ 2015



Find the parameters of Universe
Q.

Given a distribution of particles, our goal is to —
predict the parameters of the simulated universe conve

(1.31- ® ® power-spectrum analysis
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Find interesting Galaxy Clusters

Sloan Digital Sky Survey (SDSS)
L continuum spectrum
(1505 galaxy clusters

(10-50 galaxies in each)
(17530 galaxies
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Blue galaxy

Red galaxy |

What are the most anomalous galaxy clusters?

The most anomalous galaxy cluster contains mostly
 star forming blue galaxies
M irregular galaxies

B. PAczos, L. Xiong & J. Schneider, UAI, 2011. Credits: ESA, NASA




lated Fluid Flow

Imu

S

ICEeS IN

Finding Vort

15
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Find Interesting Phenomena in Turbulence Data

Anomaly detection

Anomaly scores 16



iIdar Point Cloud




Agriculture

Recommend experiments (which plants
to cross) to sorghum breeders.
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Surrogate robotic system in the field

19



Surrogate robotic system in the field

The surrogate system collecting data at the TAMU field site. The carriage supports two boom assemblies each
one of which carries a sensor pod. The carriage slides up and down on the column allowing full scanning of a
plant.

20



Name Range RMSE error
Leaf angle* 75.94 3.30 (4.35%)
Leaf radiation angle*  120.66 4.34 (3.60%)
Leaf length* 35.00 0.87(2.49%)
Leaf width [max] 3.61 0.27 (7.48%)
Leaf width [average] @ 2.99 0.21 (7.02%)

Leaf area*

133-45

8.11 (6.08%)
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Emerging images
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Emerging images
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Generative Adversarial Networks




Generating Adversarial Networks

minmax V (D, G)
& D

V(D,G) = Epupyora(x)llogD(x)] + E,op, () [log(l — D(G(2))]

/ D real data

e sigmoid
1 5 k ?d?ta(-’r) —___function
= @ | Discriminator (— 1
Network "
>~ pz(z) Generator D(a:) 0
® | Network L B+
prior generated
data

Generated fake
living room images

Generated fake celebrity images

Tero Karras, Timo Aila, Samuli Laine, ICLR 2018
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Machine Learning
and Art




Ravanbakhsh, M., Lanusse, F., Mandelbaum, R., Schneider, J., and Poczos, B., AAAl 2017

visual Turing test

Mock - PixelCNN Real - SDSS



Point Cloud GAN

(c) Plane (d) Guitar

For each object, from left to right is training data, Auto Encoder competitor, and PC-GAN. PC-GAN is better

in capturing fine details like wheels of the airplanes or proper chair legs.
29



Theory of Generative Adversarial Networks

Goal: Suppose we observe n IID samples X+, ..., Xn 1P P from a distribution P

that is unknown but is assumed to lie in some regularity class P.

We are interested in constructing an estimator P* : {X1,...,Xn} —> P of P

with the goal of solving:

—~

P} = arg min sup [Ex., X)]—Ey_ 5 X
", Pefgfefd\ xoP LFCO1 = Ex pix, . x,y PO

where F; and F4 are called the discriminator and generator classes.

Question: When does limp_o0 d(P}, P) = 07

Question: What is the convergence rate of the convergence?
30



Statistical Results

Under some conditions

e f4 and Fy are Besov spaces

e the neural networks are large enough (i.e. can approximate
functions in the above Besov places well)

e the neural networks are fully connected using RelLLU activa-
tion function.

e \We solve the minmax optimization problem perfectly,

Then the GAN is consistent and minimax optimal

31



Open Questions

Statistical properties under less restrictive conditions?

Results for convolutional neural nets?

Best way for training GANs (i.e best way for solving the minmax optimization)?
GANs on manifolds?

Rare event generation?

Generate uniform distribution on the support of the data?

O O O O O O

32



Experiment Design



Experiment Design

Given a collection of results from past experiments, recommend new experiments to run.
= some experiments are expensive (time, money) and high-quality, some are

cheap and low-quality.
= consider costs and expected information gain

Code available: https://github.com/dragonfly/dragonfly

34



Gaussian Processes



Why GPs for Regression?

Regression methods:
Linear regression, support vector regression, kNN regression, deep neural networks, etc...

Motivation:
All the above regression methods give point estimates only. We would like a method that could

also provide “confidence” during the estimation.

* 1 a/

-1 &’
. 2N
> -5 0 5
input, x

Sampling from GP: We can also use GP the generate samples from the posterior (red, blue, green)

36
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Results: Sin function
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Properties of Multivariate Gaussian Distributions

38



Marginal and Conditional distributions of Gaussians are Gaussian

39



Gaussian Processes

Definition: (Gaussian Processes)

GP is an (uncountably infinite) collection of random variables, s.t. any finite

number of them have a joint Gaussian distribution

Notations:

f(x) ~ GP(m(x),k(x,%)) € R, x ¢ RP

m(x) = E[f(x)] € R, (mean function)
k(x,%) = E[(f(z) —mx)(f(X) —mE))!]eR

(covariance function)

output, f(x)

2,

-2

vl

/

-5
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Gaussian Process Pseudo Code

Inputs:

T

X =|: | eR"™P pn training inputs
T
alay' £728
o

y= || €R" n training targets
|Yn

k(-,-) : RP*D _, R covariance function (kernel)

x4 test input

o2 noise level on the observations

[y(x) = F(x) + €, e ~ N(0,57)]



Gaussian Process Pseudo Code (Continued)

1., K € R"*™ Gram matrix. K;; = k(x;,X;)

k(Xla X*)

k(xn:,x*)
2., a= (K +52I,) ly e R?

4., cov(fi) = k(e Xx) — ﬁz; [K + 021,,1]—11\1% cR
ﬁ R1xn Rfr;rxw, R™

Outputs: [, cov(f+)

42



Results: Sinc function

151
O  data
————— function
oD |
1 O error bars

Target

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input



Take me homel

GPs can be used for
= nonlinear regression
= can provide “confidence” of the estimate
= and can sample from the posterior distribution of regression
functions

44



GP Application:
Bayesian Optimization



Bayesian Optimization

[ Bayesian optimization (BO) is a popular recipe for
O optimizing expensive black-box functions
O where the goal is to find a global maximizer of the black-box objective function
0 We dont even need to know the gradient of the objective function

 Bayesian optimization has been used for a variety of practical optimization tasks such as
O hyperparameter tuning for machine learning algorithms,
O experiment design,

d online advertising,
Q..

[ Often heuristics only

a Big gaps in our theoretical understanding ...
= Convergence rate?
= Dependence on dimension?

46



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(z)

47



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(z)

48



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f ()3
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Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(x)

50



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

flz)

51



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(x)

52



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(z)

53



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(z)

54



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(x)

55



Bayesian Optimization with Thompson Sampling

Goal: maximize function f using the results from previous experiments.

f(x)

56



Bayesian Optimization

Other criteria for selecting x, :

JUpper Confidence Bounds (Srinivas et al. 2010)

J Expected improvement (Jones et al. 1998)

d Probability of improvement (Kushner et al. 1964)

JEntropy search (Hernandez-Lobato et al. 2014, Wang et al. 2017)
d...and a few more.

Bayesian models for f :

(J Gaussian Processes (most popular)
A Neural networks (Snoek et al. 2015)
(JARandom forests (Hutter 2009)

57



Bayesian Optimization with Upper Confidence Bounds

Goal: maximize function f using the results from previous experiments.

fz)

58



Gaussian Processes with Upper Confidence Bounds

59



Gaussian Processes with Upper Confidence Bounds

fz)

60



Gaussian Processes with Upper Confidence Bounds

f(z)

61



Gaussian Processes with Upper Confidence Bounds

62



Gaussian Processes with Upper Confidence Bounds

63



Gaussian Processes with Upper Confidence Bounds

64



Gaussian Processes with Upper Confidence Bounds

65



Gaussian Processes with Upper Confidence Bounds

f(z)

66



Take me home!

Bayesian Optimization can be used for function optimization
* When function evaluation is expensive
= Gradient is not available

67



Recommend experiments for creating better batteries

Machine Learning Unified Synchronous Experimentation (MUSE): Rapid Autonomous Discovery/Optimization
of Electrode and Electrolyte Materials (joint project with Jay Whitacre & Venkat Viswanathan)

Objective
functions

Test Criteria

Materials Data
Library

MUSE
Controller

-
I

“

2! W n Variable flow valve

Electrolyte mixing
! ) sy manifold
Electrochemical
Testing equipment
- * 2 dimensional functional
}\H(:e"_i‘r’/ materials array
x-y
controller
Electrolyte [
Experiment ® wog® f
. ‘ . Conductivity
Solvent Salt f electrolvt
€Iy %EC Iy: LiPFr, . | or electro y e
ZIg: Y%DMC Is5: L]N(); :
x3: NEMC S
]

Goal: perform autonomous experimentation on electrolyte/electrochemically functional material
combinations based on feedback from previous experiments.

68






Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)

Setting

A decision maker chooses an action (experiment) x € X
then observes the outcome of the experiment Y, ~ P(-|x,0%).

where 0* is an unknown parameter that we want to estimate
from the outcome of the experiments.

After t rounds, the collected data: D; = {(Xj>YXj)}§':1

X; = experiment parameter at iteration j, YijresuIt of the X; experiment.

The goal: minimize a penalty function A(6*, D) in 6

Example: 0 = [fs01(), fvis(), maXy feon(x)] Solvation energy, viscosity, max conductivity

/\(9*7 Dn) — aHfsol o fSOl(Dn)”Q _|_ 5”fvis T fvis(Dn)”2 + ’Y(maxfcon T th&fn fcon(Xt))a
T 70



Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)

After t rounds, the collected data: D; = {(Xj:YXj)}§:1 (Experiment parameters, results of experiments)

M (0,D,2) = By, pv(e) [At(é’, D {(:z:ij)})].

Algorithm 1: MPS (m;)

Require: Prior po for 6,, Conditional distribution P(Y'| X, 6).
1: Dy + 9.
2: fort=1,2,... do
3:  Sample 6 ~ p;_1 = P(6,|D;_1).
4:  Choose X; = argmin, .y A\;_; (6, Di—1, ).
5:  Yx, < conduct experiment at X;.
6: Set Dt — Dt—l U {(Xt, YXt)}
7: end for

/\(9*7 Dn) — aHfsol - Jgsol(l)?@)||2 + /BHfViS - fvis(Dn)Hg + ’)/(Hla){fcon —

(predicted error after trying
the experiment with parameters x)

max feon(X¢)),

Xt}tgn 71



Myopic Bayesian Design of Experiments via Posterior Sampling (MPS)

Action space X: proportion of two solvents EC and EMC, molarity of the salt LiPF6, and T temperature

Electrolyte Design

0.9}
08' _I\._‘I_ 3
Gk W E SR SR S ST SIS S .
0.6} ‘
!
04}
3 "
~< 0.3
.......... GRID k. -
PS o
0.21 |——T)s "{-\ I
* +
et I
1 | 1 1 ‘s
0 10 20 30 40

Number of Experiments (n)

/\(Q*gDn) — aHfsol — fsol(Dn)”Q + /8||fvis — fvis(Dn)HQ + 'y(max fcon — 1nax fcon(Xt))a

Xt,tgn 72



Manufacturing: Recommend parameter settings for machines

Goal: Recommend settings for wire cutting machines

/3



Find the True Parameters of the Universe

9(8)
surrogate functlon

rameter spage

pa
tru
para ters

i) N

real
universe

mathematical
model

observations

Hypothesis tests, MSE
likelihood: P (X ;4|0)
J

simulated
observations

hypothetrcal
parameters

8000 ‘\\\

7000
6000

5000
4000
3000
2000
1000

0 200 400 600 800

\‘l* /1

Question: How to search the parameter space? arg maxgco P(Xps/0) =7

Solution: Learn a surrogate function and make
experiment decisions using it



Multi-fidelity optimization

75



Example:

Multi-fidelity optimization

Desired function f is very expensive, but ...
we have access to cheap approximations.

fi, f, 3 ~ f which
are cheaper to evaluate.

f: expensive target function
fi:cheap computer simulation
f2:cheap lab experiment
f3:expensive lab experiment

76



Multi-fidelity application:
Astrophysical Maximum Likelihood Inference

Data: We use Type la supernova data for maximum likelihood inference on 3 cosmological parameters:
= the Hubble constant H, € (60, 80),

= the dark matter fraction Q,, € (0, 1)

= and dark energy fraction Q, € (0, 1),

hence d = 3.

Likelihood function: Robertson-Walker metric (Requires numerical integration).
Multi-fidelity:

We construct a p = 2 dimensional multi-fidelity problem where we can choose between
= datasetsize N € [50, 192]

= and perform the integration on grids of size G € [10°"2, 10/6] via the trapezoidal rule.

As the cost function for fidelity selection, we used A(N, G) = NG as the computation time is linear in both parameters



Multi-fidelity application:
Astrophysical Maximum Likelihood Inference

We plot the maximum average log likelihood against wall clock time as that is the cost in this experiment.

The plot includes the time taken by each method to tune the GPs and determine the next points/fidelities for
evaluation.

Supernova, p=2, d=3

[}%é - Bayesian Optimization with Continuous Approximations
= 0.08 (BOCA)
S 0.07 t
= 006 | We compare BOCA to the following four baselines:
= 0.
=2 0.05 | 1 1. GP-UCB,
— 5 GP-UCB II. the GP-El criterion in BO (Jones et al., 1998),
oD
3 0.04 - if X GP-El 1 lll. MF-GP-UCB (Kandasamy et al., 2016a)
o ' ME:SE(')UCB IV. and MF-SKO, the multi-fidelity sequential kriging
é 0.03 0 BOCA | optimisation method from Huang et al. (2006).
0.02 LH——

1000 1500 2000 2500 3000 3500 S
Time (s)



Neural Architecture Search with Bayesian Optimization and Optimal Transport

Multi-fidelity learning: Training a neural network on large dataset is very expensive, but sometimes cheap

approximations are available.
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Neural Architecture Search

Blog Indoor Slice Naval Protein News Cifar10 | Cifarl0O
Method , B

(60K, 281)| (21K,529)| (54K,385)| (12K,17) | (46K,9) | (40K,61) | (60K,1K)| 150K iters
RAND 0.780 0.115 0.758 0.0103 0.948 0.762 0.1342 0.0914

+0.034 | £0.023 | +0.041 | £0.002 | £0.024 | +0.013 | £0.002 | =+ 0.008
EA 0.806 0.147 0.733 0.0079 | 1.010 0.758 0.1411 0.0915

+0.040 | £0.010 | £0.041 | £0.004 | £0.038 | £0.038 | +0.002 | £0.010
TreeBO 0.928 0.168 0.759 0.0102 0.998 0.866 0.1533 0.1121

+0.053 | £0.023 | £0.079 | £0.002 | £0.007 | +=0.085 | £0.004 | +0.004
NASBOT 0.731 0.117 0.615 0.0075 | 0.902 0.752 0.1209 | 0.0869

+0.029 | £0.008 | £0.044 | £0.002 | £0.033 | £0.024 | £0.003 | +£0.004

RAND: random search; EA (Evolutionary algorithm): TreeBO: a BO method which only searches over feed forward structures.

The first row gives the number of samples N and the dimensionality D of each dataset in the form (N, D).

The subsequent rows show the regression MSE or classification error (lower is better) on the test set for each
method.

The last column is for Cifar10 where we took the best models found by each method in 24K iterations and trained it
for 120K iterations. When we trained the VGG-19 architecture using our training procedure, we got test errors
0.1718 (60K iterations) and 0.1018 (150K iterations)



Take me home!

Methods for Multi-fidelity optimization
= Applications in Cosmology, Neural Network Search
= Code available

81



Multi-objective optimization

Many real world applications can be framed as multi-objective optimization problems, where
we wish to simultaneously optimize for multiple criteria (multi-objective optimization).

 Classification: max True positive rate, max True negative rate, min False positive rate, min
False negative rate, min computation cost, fast decision, min energy, min memory usage,
min hard drive storage...

Drug discovery: each evaluation of the functions is an in-vitro experiment
" measure the solubility, toxicity and potency of a candidate example.
" Goal: max solubility, max potency, min toxicity, min experiment cost.
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Multi-objective optimization

1 Goal: recover (some part of the) Pareto front of these objectives with minimum number of experiments.

Pareto Frontier

A
e w Pareto Frontier
s e « Wi
2 ® 6
i \
\
® |
\
® O
® @ ®
Accuracy g

Goal: Maximize Objective 1 and Objective 2
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Multi-objective optimization. Results:

-100 -80 -60
f1(x)

Brighter colors were sampled in the later iterations
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Take me home!

Bayesian Optimization based algorithm for multi-objective optimization
" Codeis available!
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Experiment Recommendation
for Efficient Posterior Estimation

Query Efficient Posterior Estimation in Scientific Experiments via Bayesian Active Learning
Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos
Artificial Intelligence Journal, 2017
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Posterior Estimation

1 Several cosmological phenomena are characterized by the cosmological parameters (e.g.
Hubble constant, dark energy fraction).

1 Given observations, we wish to make inferences about the parameters.
1 Physicists have developed simulation-based probability models (= black box) of the
Universe which can be used to compute the likelihood function of cosmological

parameters for a given observation.

1 Our goal is an efficient way to estimate posterior densities as functions when calls to
this black box / simulators are expensive.

87



Likelihood of the Parameters of the Universe
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Active Posterior Estimation

We have a parameter space © for the unknown parameters 6 (cosmological constants

Let X, denote our observations (e.g. signals from telescopes).

For each 6 € © we have the ability to query an oracle for the value of the
likelihood L(0) = P(X,s|0), but these queries are expensive.

P(X0b8|9)P(9)

Posterior distribution:  P(0|X,,,) =
| obs P(Xobs)

~ L(O)P(0)

Goal: Obtain an estimate P(0|X,;,) as a function of  while minimizing queries to the oracle.
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Active Posterior Estimation

Goal: Obtain an estimate P(Q[Xobs) while minimizing queries to the oracle.

P(Xobs|9)P(9)
P(Xobs)

P8 Xops) = ~ L£(0)P(0)

Training data:

Ay = {6’@-,5(9@-)}’?21 all data collected up to iteration ¢t.

Ideal Greedy Parameter Selection:

f; = arg min D(P9|Xob8(9)||PAt—1U(9+’ £(9+)(9))

9_|_€@ /

Unknown!
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Utility Function Based Active Posterior Estimation

* An iterative greedy algorithm that picks the next point based
on the points we collected so far.

*x At time step t, we have observations at ¢t — 1 points:
Bi_1 ={6;, log (ﬁ(@i)P(Qi))}f;ll all data collected up to iteration ¢t — 1.
* Fit a GP using data B;_1

* Design a utility function u; : © — R using the GP.
ut(0) captures value/utility of querying at 6.

x Choose 6; = arg maxgeco ut(6).

*x Repeat.

91



Negative Expected Divergence
Training data: A = {0;, E(a’i}tzl

Ideal greedy experiment recommendation:

—_ : »A _1U(9 ,ﬁ(@ ))
0; = arg gTé%D(PGIXObS(G)HP t + + (9))

Negative Expected Divergence (NED)

» |deally we should choose the point that results in the highest reduction in divergence
if we knew the likelihood and the true posterior at that point.
"= |n NED, we choose the point with the highest expected reduction in the divergence.

u PP(04) = —E, 4By ([ D(R(0)|| P10+ P+)(6) )

9, = arg max vV L (g
¢ g@+€(9Ut ( +)
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Negative Expected Divergence

; - ! ';11 D(h]‘ ﬁAt—_1U(9+,pB})
.f -".‘ \ —P h.-:._i_ s D(hz‘ ﬁﬂ_r-lU(@..-_,PB})

. »
L — ® & @

10g P(Q: Xobs)

D(hl‘ 16*"'11‘ 1U (04 -Ph’))
, > ﬁ || PA—1U(0+,pR)
'-.;%‘F‘-* | D(,}?-'EHP ‘ )

X
9_|_ ,)t % v » "1“
. o h~F
Training data: 0 Xobs

By = {6;, log (ﬁ(@i)P(Gi)) g:l all data collected up to iteration ¢.
— {92'3 log P(QiaXobs)}tzl
Negative Expected Divergence
x Fit a GP on this data. ¢g(8) ~ GP(B,) = g(0) =~logP(0,Xs)
x Consider experiment in 6

x sample from the above GP and evaluate in 64 = ppg,pR, PG
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Negative Expected Divergence

ha D(hlnﬁm_luw—,ps))

logP 9,Xof)5 i
(0 Ko 2 Dby A ee))

D (hy || PAe-1V(0+pr))
v 5T A D(hy|| PAV0+pn)
S i

0., L E e »
ho~ Fyix,.
Negative Expected Divergence ui "7 (04) = —E, B[ D(h(0)||P4-17C+ P+)(9))]

x sample from the above GP and evaluate in 64 = ppg,pR, PG

x For pp, we add (64,pp) as a hallucinated point to the t — 1 and obtain an
estimate of the posterior PAt-1Y(04.pB)

* Next, we rebuild our GP using these t points. 94
* We draw samples from the new GP, exponentiate, and normalise them to obtain samples h;



Experiments on Synthetic Data

1
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= 100 points chosen in order by NED for a synthetic 2D experiment.
" The green contours are the true posterior.
= [nitially the algorithm explores the space before focusing on high probability regions. 9



Experiments on Synthetic Data

102 :

KL divergence between 10°
the estimated posterior

and the true posterior

—&— MCMC-DE
ABC
o | —<—MCMC-R
10 —4— RAND
—o—EV
NED
—— AGPR
10 BO-EI | o ) S
10° 10’ 102 103
Number of Queries

KL Divergence

Comparison of NED/EV against MCMC-DE, ABC, MCMC-R and RAND for a 1D synthetic example
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Estimating Cosmological Parameters using Type-1 Supernovae data

We use supernovae data for inference on 3 cosmological parameters:

* Hubble Constant (H, € (60, 80), fo—————mag .
* Dark Matter Fraction Q,, € (0, 1) ' T
* Dark Energy Fraction Q, € (0, 1). 102 |
8 [
The likelihood for the experiment @ 1
is given by the Robertson— Walker § 10
metric which models the distance a |
. B —=—— MCMC-DE
to a supernova given the X 10° | Emcee
i ABC ]
parameters and the observed red- | —« MCMC-R|
shift. . NED
10 ——EV
Dataset is taken from: T. M. Davis et al. Scrutinizing Exotic _— 1f03 _
Cosmological Models Using ESSENCE Supernova Data er of Queriles
Combined with Other Cosmological Probes. KL was approximated via numeric integration. .

The Astrophysical Journal, pages 716—725, 2007.



Estimated Posterior Distributions
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Thanks for your Attention!
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