Kazu Akiyama (Jansky Fellow / MIT Haystack Observatory)

Event Horizon Telescope

First Images of a Black Hole

Event Horizon Telescope

The Shadow of a Black Hole

Black Holes with the Largest Angular Sizes

Source	BH Mass (M _{solar})	Distance (Mpc)	1 Rs (µas)	
Sgr A*	4 x 10 ⁶	0.008	10	M 87 (NGC 4486) Ultra-high-sensitivity HDTV I.I. color camera (NHK) Exp. 40 sec. (10 frames coadded) January 16, 1999 Subaru Telescope, National Astronomical Observatory of Japan Copyright © 1999, National Astronomical Observatory of Japan, all rights reserved
M87	3.3 - 6.2 x 10⁹ 6.5 x 10 ⁹	16.7	3.6 - 7.3 7.6	
M104	1 x 10 ⁹	10	2	
Cen A	5 x 10 ⁷	4	0.25	

Units of the Angular Size

Event Horizon Telescope

Protractor : 1 ticks = 1 degree

- x 1/60 = 1 arcmin
- x 1/60 = 1 arcsec
- x 1/1000 = 1 mas
- $x 1/1000 = 1 \mu as$

40 - 50 µas

Event Horizon Telescope

Event Horizon Telescope

Sgr A*

Credit: Hotaka Shiokawa **M87**

Credit: Monika Moscibrodzka

Kazu Akiyama, CNF2019 Symposium, SURA Headquarter, 2019/08/12 (Mon)

EHT 1 50µas

Event Horizon Telescope Collaboration

207 members, 59 institutes, 18 countries in North & South America, Europe, Asia, and Africa.

Event Horizon Telescope

Meet the Telescope

SMT, Arizona

JCMT, Hawaii

Photos: ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie

1

Meet the Telescope

SPT, South Pole

Photos: ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie

1

From Observations to Images

Credit: Lindy Blackburn

From Observations to Images

Event Horizon Telescope

How the EHT works?

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

Earth Rotation Synthesis

Credit: Daniel Palumbo

Interferometric Imaging — Ideal Case

- Sampling is NOT perfect Number of data M < Number of image pixels N
- Equation is *ill-posed*: infinite numbers of solutions
- Interferometric Imaging: Picking a reasonable solution based on a prior assumption

Event Horizon Telescope

Remained Phase & Amplitude Errors after Calibrations

Amplitude Errc

Typically: few LMT: > 50%

Event Horizon Telescope

Ideal+Thermal Noise

$$e^{-i(\phi_1 - \phi_2)} \mathcal{V}_{12}^{\dagger}$$

ors Phase Error
~10% Only fast (~sec to min)
fluctuations are corrected

Calibrated data sets (before imaging)

EHT Collaboration 2019c, ApJL, 875, L3

EHT Collaboration 2019a, ApJL, 875, L1

Challenges and Philosophy of EHT Imaging

ALMA Partnership et al. 2015

Event Horizon Telescope

CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Event Horizon Telescope

Two Classes of Imaging Algorithms

Credit: Katie Bouman

Event Horizon Telescope

New Imaging Methods

Sparse Modeling Akiyama et al. 2017a, 2017b Ikeda et al. 2016, Honma et al. 2014

Two Imaging Libraries eht-imaging (Chael+2016,2018) : https://github.com/achael/eht-imaging SMILI (Akiyama+2017a,b) : <u>https://github.com/astrosmili/smili</u>

Event Horizon Telescope

Maximum Entropy Method (MEM) Chael et al. 2016, Fish et al. 2014, Lu et al. 2014, 2016

2017 2016

EHT Blind Imaging Challenges (2016 -)

Method I

Event Horizon Telescope

Method 3

Method 4

Method 5

(Katie Bouman 2016, PhD thesis; the EHT Imaging WG)

Kazu Akiyama, CNF2019 Symposium, SURA Headquarter, 2019/08/12 (Mon)

NG) (Mon)

EHT Blind Imaging Challenges (2016 -)

Method I

Event Horizon Telescope

Method 3 Method 4 Method 5 (Katie Bouman 2016, PhD thesis; the EHT Imaging WG)

Kazu Akiyama, CNF2019 Symposium, SURA Headquarter, 2019/08/12 (Mon)

NG) (Mon)

Four Imaging Teams

New techniques Team 1

Americas

US & Chile (SAO, U. Arizona, U. Conception) Leader: K. Bouman & A. Chael

Team 2

Global

US, Japan, Netherlands (MIT, NAOJ, Hiroshima U., Radboud U.)

Leader: K. Akiyama & S. Issaoun

Traditional Techniques

East Asians

Korea, Japan & Taiwan (ASIAA, KASI, NAOJ)

Leader: S. Koyama

Cross Atlantic

US, Spain, Germany, Finland (Boston U, MPIfR, IAA, Aalto)

Leader: T. Krichbaum & A. Marscher

7 weeks later....

2 Q Q am Convolved Image-to-Image Comparisions using recorr 100 . . 1.8 1.06 1.16 1.00 3 6.36 1.00 0.56 5,37 1.96 3 4.02 5.98 1.36

Individual Image Statistics

Four Imaging Teams

New techniques Team 1

Americas

US & Chile (SAO, U. Arizona, U. Conception) Leader: K. Bouman & A. Chael

Team 2

Global

US, Japan, Netherland (MIT, NAOJ, Hiroshima U., Radboud U.)

Leader: K. Akiyama & S. Issaoun

Event Horizon Telescope

Traditional Techniques

East Asians

Korea, Japan & Taiwan (ASIAA, KASI, NAOJ)

Leader: S. Koyama

Cross Atlantic

US, Spain, Germany, Finland (Boston U, MPIfR, IAA, Aalto)

Leader: T. Krichibaum & A. Marscher

The First EHT Images of M87 (July 24, 2018)

Imaging Pipelines: Human Choices

DIFMAP (CLEAN + Self Calibration)

Compact Flux Stop Condition Weighting on ALMA Mask Size Data Weights eht-imaging (Regularized Max Likelihood)

Compact Flux Initial Gaussian Size Systematic Error Regularizes MEM TV TSV L1

(Shepherd et al. 1997, 1998)

(Chael et al. 2016, 2018)

Event Horizon Telescope

SMILI (Regularized Max Likelihood)

> Compact Flux L1 Soft Mask Size Systematic Error Regularizes TV TSV L1

(Akiyama et al. 2017a,b)

Credit: Katie Bouman

Kazu Akiyama, CNF2019 Symposium, SURA Headquarter, 2019/08/12 (Mon)

(Mon)

Objective Imaging Process

Fiducial Images on Apr 11

Fiducial Images on Apr 11

Event Horizon Telescope

EHT Collaboration 2019d, ApJL, 875, L4

Stellar Mass: 6.2 x 10⁹ M_{sun} (Gebhardt et al. 2011)

A worm Hole: $\sim 2.7 R_s$

Naked Singularity: 1 Rs (extremely spinning)

6.5 Billion Solar Mass Black Hole

Event Horizon Telescope

Gas Mass: $3.5 \times 10^9 M_{sun}$ (Walsh et al. 2013)

Black Hole: 4.84-5.2 Rs

Deviation from the circle < within 10% No significant deviations from GR

Event Horizon Telescope

EHT BLACK HOLE IMAGE SOURCE: NSF

Event Horizon Telescope

PLUTO VOYAGER 1 Ľ SUN

https://xkcd.com/2135/

Mathematics

Statistics

Astronomy

Physics

