

Lth layer VGG $F_{\underline{k}\underline{k}}^{(D)} = \sum_{j} N_{ijk} N_{ijk}^{(L)}$ ቴ From (neuron activity) (channel-channel corr Style matrix tensor 0. $J(\mathbf{z}, \mathbf{s}) = \sum_{\mathbf{L}} \| F_{\mathbf{k}\mathbf{k}'}^{\mathbf{L}}(\mathbf{z}) - F_{\mathbf{k}\mathbf{k}'}^{\mathbf{L}}(\mathbf{s}) \|^{2}$

Remarks : Choice of L for content and style Carlier portion (ater portion for "style" for content (Insights from CNW Filter visuelisation)

	USE						
COU4_USE1.tif	COU4_USE2.tif	COU4_USE3.tif	COU4_USE4.tif	COU4_USE5.tif	COU4_USE6.tif	COU4_USE7.tif	COU4_USE8.tif
COU4_USE9.tif	COU4_USE10.tif	COU4_USE11.tif	FW28_USE1.tif	FW28_USE2.tif	FW31_USE1.tif	FW31_USE2.tif	FW31_USE3.tif
FW31_USE4.tif	FW31_USE5.tif	FW31_USE6.tif	FW31_USE7.tif	FW31_USE8.tif	FW31_USE9.tif		

ResNet-50 (50 layers)

At each layer, we construct what is called Gram matrix that is known to represent "style" of a painting (such as Picasso or van Gogh, for example) in the application field termed "neural style transfer". We used these "style" matrices at different scales (i.e., computed at different layers) to cluster wood images by PCA. Once again, the deep neural network, ResNet-50, was pretrained on ImageNet of ~ 1 million labelled images (or supervised learning). So our clustering is unsupervised based on features extracted by a pretrained deep network.

"Scale": Overall, we think there exists a suitably defined scale (or scales) that can separate these wood images to 4 distinct groups based on the "style" of the images at those scales (around 25th layer or so in our current context of how these photos are taken).

"Style": is defined as Gram Matrix (2nd order correlation matrix of different filters in convolution neural networks). These matrices are known to represent features like texture, color, etc., that are widely used to transfer painting styles of various artists such as Picasso or van Gogh to one's own photo. Whether these matrices are the best definition for "style" or "pattern" in the specific context of wooden tools is clearly debatable.

