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Scale and Style

Typical Tasks of Image Analysis

Classification Instance
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Classification + lization Object Detection
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Breakthrough in Image Analysis: Convolution Neural Network (CNN)

The architecture of LeNet5
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Example: technical analysis of stock trading?
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Image from http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/
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How many filters do we need? (by trial and error)
What are they? (by machine learning)

4 filters
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CNN The architecture of LeNet5
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Status of Image Classification - Deep Learning (abstraction/coarse-grain/scaling)

Revolution of Depth 2.2

25.8
152 layers
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{ 22 layers ] 19 layers
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3.57 I o I | 8layers 8 layers ] shallow ‘

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Phase Transition of “Landscape” and ResNet

(a) without skip connections (b) with skip connections

" @ResNet20moshort () ResNewSnoshort () ResNet-110-noshort

Tom Goldstein (UMD CS)
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Special Features at Phase Transition: (RG Flow)
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Scale-free (scale invariance, infinite
correlation, Renormalization Group,
1982 Nobel Prize to Ken Wilson)

@ Big Data: 1023! RG Theory of Big Data Analytics?
€ Monte Carlo RG/Numerical Methods
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Separation at Large Scale
Denoising (irrelevant details)
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Brain weight (g)

Monkey

Rat

Mouse

Cat

NeuroGPS-Tree: automatic
reconstruction of large-
scale neuronal populations
with dense neurites

Tingwei Quan!~4, Hang Zhou!-3, Jing Li!-3, Shiwei Li!-3,
Anan Li'-3, Yuxin Li!-3, Xiaohua Lv!-3, Qingming Luo!-3,
Hui Gong!~3 & Shaoqun Zeng!-3
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Neural style transfer

Generated image

Images generated by Justin Johnson]

Coptent

Generated image

m}%: Latestartworks ~ CREATEYOUROWN  Videos  Offer  About

JTURN YOUR PHOTOS {NTO ART.

Repaint your picture inthe style of your favorite artist

Create your own By the unique featured DeepArt

Register  Signin

TURN ANY PHOTO INTO AN ARTWORK - FOR FREE!

Pﬂ'*@«” Latestartworks  CREATEYOUROWN  Videos  Offer  About Register  Sign

TURN ANY PHOTO INTO AN ARTWORK - FOR FREE!

We use an algorithm inspired by the human brain. It uses the stylistic elements of one image to draw the
content of another. Get your own artwork in just three steps.
e Submit

o Upload photo o Choose style

‘The first picture defines the scene you would
like to have painted

Choose among predefined styles or upload your  Our servers paint the image for you. You get an
own style image.

email when it's done,
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Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science,
New York University, USA
{zeiler,fergus}@cs.nyu.edu
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Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Layer 3 Layer 4
Dept. of Computer Science,
New York University, USA

{zeiler,fergus}@cs.nyu.edu

Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Layer 1 Layer 2
Dept. of Computer Science,
New York University, USA

{zeiler,fergus}@cs.nyu.edu
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Visualizing and Understanding
Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science,
New York University, USA
{zeiler,fergus}@cs.nyu.edu

arXiv:1508.06576v2 [cs.CV] 2 Sep 2015

A Neural Algorithm of Artistic Style
Leon A. Gatys,'??* Alexander S. Ecker,">*® Matthias Bethge'?*

'Werner Reichardt Centre for Integrative Neuroscience
and Institute of Theoretical Physics, University of Tiibingen, Germany
?Bernstein Center for Computational Neuroscience, Tiibingen, Germany
4Graduate School for Neural Information Processing, Tiibingen, Germany
“Max Planck Institute for Biological Cybernetics, Tiibingen, Germany
“Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
*To whom correspondence should be addressed; E-mail: leon.gatys @bethgelab.org

In fine art, especially painting, humans have mastered the skill to create unique
visual experiences through composing a complex interplay between the con-
tent and style of an image. Thus far the algorithmic basis of this process is
unknown and there exists no artificial system with similar capabilities. How-
ever, in other key areas of visual perception such as object and face recognition
near-human performance was recently demonstrated by a class of biologically
inspired vision models called Deep Neural Networks.""? Here we introduce an

artificial evetem haced an a Neen Nenral Netwark that createc artictic imaoec
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Content optimisation

Useful properties

e Transfer learning
¢ Seperation of information

All'in all it is truly fascinating that a neural system, which is
trained to perform one of the core computational tasks of
biological vision, automatically learns image representations that

allow the separation of image content from style. ' '

A Neural Algorithm of Artistic Style - Gatys, Ecker & Bethge
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Scale and Style - Ex1: fossil specimens as the earliest evidence of tool use in the world

NO_USE F

COU_NO_USE.tif COU_NO_USE2.tif COU_NO_USES3.tif COU_NO_USEA.tif COU_NO_USES.tif COU_NO_USE®.tif FW31_NO_USE".tif

FW31_NO_USE2.tif FW31_NO_USE3.tif FW31_NO_USEA4.tif FW31_NO_USES.tif FW31_NO_USEB.tif FW31_NO_USE7.tif FW31_NO_USEB8.tif

FW31_NO_USEQ.tif FW31_NO_USE10.tif FW31_NO_USE11.tif FW31_NO_USE12.tif FW31_NO_USE13.tif FW31_NO_USE14.tif

USE

COU4_USEN.tif COU4_USE2.tif COU4_USE3Ltif COU4_USEA4.tif COU4_USES.tif COU4_USE®G.tif COU4_USE7.tif COU4_USES8.tif

COU4_USE10.tif FW28_USEN.tif FW28_USE2.tif FW31_USE1.tif FW31_USE2.tif FW31_USE3.tif

FW31_USEA4.tif FW31_USES.tif FW31_USE6.tif FW31_USE7Z.tif FW31_USES8.tif FW31_USEQ.tif
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VGG-19 (meaning 19 layers in the neural network)

112|112 x 128

56]x 56 x 256
28 x 28 x 512 TxTx512
/ 4 4 512
: 14x14x 812 | 114096

@ convolution4+ReLU
["_:1 max pooling
| fully connected+ReLU

] softmax

1x1 %1000

Simple Principal Component Decomposition (clustering) using large-scale features via VGG-

19 (meaning 19 layers in the neural network)

PCA on VGGFC2 Embedding
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V66-19 34-layer plain

34-layer residual

ResNet-50 (50 layers)

At each layer, we construct what is called Gram matrix
that is known to represent “style” of a painting (such
as Picasso or van Gogh, for example) in the
application field termed “neural style transfer”. We
used these “style” matrices at different scales (i.e.,
computed at different layers) to cluster wood images
by PCA. Once again, the deep neural network, ResNet-
50, was pretrained on ImageNet of ~ 1 million labelled
images (or supervised learning). So our clustering is
unsupervised based on features extracted by a
pretrained deep network.
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Conclusion: looking at the very first layer (i.e., very fine detail), difficult to separate images.
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PCA on ResNet50 GramMatrix Layer 25
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Conclusion: looking at the middle layer (25t layer), which may be the most suitable scale, the images are
well clustered and separated (with only a few mixed-ups C31_1/2/3 and F28_1/2, red=used). The
separation of used vs not-used is by the dashed line along the second principal components.

PC1_0.438

1.0

0.8

0.6

0.2

0.0

PCA on ResNet50 GramMatrix Layer 49

60000 e
. o6
X3
40000
g 20000 .
8
o‘l
~N
O
a
01 @52
P
@51
¢ @i
~20000
5
oy
Pl
~40000 + . . . . .
~40000  —20000 0 20000 40000

Conclusion: looking at the last layer (the largest scale), one overlapping cluster appears again, consistent

with VGG-19 conclusion.
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“Scale”: Overall, we think there exists a suitably defined scale (or scales) that can separate these
wood images to 4 distinct groups based on the “style” of the images at those scales (around 25t
layer or so in our current context of how these photos are taken).

“Style”: is defined as Gram Matrix (2" order correlation matrix of different filters in convolution
neural networks). These matrices are known to represent features like texture, color, etc., that are
widely used to transfer painting styles of various artists such as Picasso or van Gogh to one’s own

photo. Whether these matrices are the best definition for “style” or “pattern” in the specific context
of wooden tools is clearly debatable.

43

Scale and Style — Ex2: Breaking detection limit of trace metabolites with machine

learning

analyct:L%Iﬁstry

@ Cite This: Anal. Chem. XXX, XXX, XXX-X0X0X pubs.acs.org/ac

Trace, Machine Learning of Signal Images for Trace-Sensitive Mass
Spectrometry: A Case Study from Single-Cell Metabolomics

Zhichao Liu," Erika P. Portero,” Yiren _]ian,+ Yunjie Zhao," Rosemary M. Onjil(o,i Chen Zeng,*'+
and Peter Nemes**

"Department of Physics, The George Washington University, Washington, D.C. 20052, United States

“Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

SInstitute of Biophysics and Department of Physics, Central China Normal University, Wuhan, Hubei 430079, China
© Supporting Information

ABSTRACT: Recent developments in high-resolution mass spec-

trometry (HRMS) technology enabled ultrasensitive detection of Trace
proteins, peptides, and metabolites in limited amounts of samples,
even single cells. However, extraction of trace-abundance signals

from complex data sets (m/z value, separation time, signal

abundance) that result from ultrasensitive studies requires improved olf
data processing algorithms. To bridge this gap, we here developed
“Trace”, a software i i

framework that incorporates machine learning

(ML) to automate feature selection and optimization for the 2 @
extraction of trace-level signals from HRMS data. The method was @
validated using primary (raw) and manually curated data sets from

single-cell metabolomic studies of the South African clawed frog

(Xenopus laevis) embryo using capillary electrophoresis electrospray ionization HRMS. We demonstrated that Trace combines
sensitivity, accuracy, and robustness with high data pmcessmg throughput to recognize signals, mcludmg those previously

identified as metabolites in single-cell capillary electroph that we conducted over several months.

These performance metrics combined with a compatibility vmh Ms data in open: source (mzML) format make Trace an
attractive software resource to facilitate data analysis for studies h )
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But mostly in 2D — Intensity(retention time, m/z)
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Andrew Ng
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F1 Weak Signal Detection

From Invariance to Stability

* Informally, if |[7]] measures the amount of deformation,
many recognition tasks satisfy

Vo, , [f(x) — flz)] S 7]l

Data augmentation for more complicated affine transformation?

Our Metabolite Data:
U (4*Control + 4*Test Sample)
U 10 Time Points

U 299 (7+47+245) metabolites for Neg_NP

Assumption: 2D images of a real signal tend to
be similar/ consistent among multi_samples.

> >
CEEBESEIE CESUREEGECE BB CBE UG C BB G CUBNSNEE CPEBG CBEBBEcemEINNES spuiy
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2.3 "MetaNet”: Trace-level Signal! (3 &
)
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Real Signal: Consistency (NOT Random)

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff Dmitry Kalenichenko James Philbin
fschroff@google.com dkalenichenko@google.com jphilbin@google.com
Google Inc. Google Inc. Google Inc.
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Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

https://arxiv.org/abs/1503.03832

Andrew Ng
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Metabolite_2
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Metabolite self_similarity with Threshold
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Metabolite Signal Shape €-> Chemical Properties ??
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HaiN Extended Connectivity Fingerprints (ECFPs) are
HoN circular topological fingerprints designed for
psemon O molecular characterization.
HiC\ "Xy
\—k/\NHZ
;.
Methylhistamine (m/z:126.102) e?' N 0
OH o z
HsC Considering atom 1 in benzoic acid amide
threonine (mvz: uaou)NHz
NH A
HoN N A A A
ST o
i - X N
. o o o o o Iteration 0 Iteration 1 Iteration 2
L]
salt Deciphering this relation will greatly facilitate
the identification of unknown metabojiées!
Andrew Ng
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