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Introduction
• Goal: Compute hadron structure properties from QCD 

• Parton distribution functions (PDFs) 

• Operator product: Mellin moments are local matrix elements that can be computed in 
Lattice QCD  

• Power divergent mixing limits us to few moments 

• Few years ago X. Ji suggested an approach for obtaining PDFs from Lattice QCD 

• First calculations already available 

• A new approach for obtaining PDFs from LQCD introduced by A. Radyushkin  

• Hadronic tensor methods
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�
Unpolarized PDFs proton:
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p p
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KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

M+(z, p) = 2p+Mp(�p+z�, 0) Mp(�p+z�, 0) =

Z 1

�1
dx f(x) e�ixp+z�

Goal:  
Compute PDFs with Lattice QCD using  
space like separations z

Mp(�pz,�z2) is a Lorentz invariant therefore  
computable in any frame

⌫ = �zp Ioffe time



V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

Q(⌫, µ) is called the Ioffe time PDF

Q(⌫, µ) =

Z 1

�1
dx e�ix⌫f(x, µ)

Radyushkin Phys.Rev. D98 (2018) no.1, 014019 
Izubuchi et al.  Phys.Rev. D98 (2018) no.5, 056004  

Zhang et al. Phys.Rev. D97 (2018) no.7, 074508 

Matching to MS

Mp(⌫, z
2) =

Z 1

0
d↵ C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +O(z2⇤2

qcd)



One loop calculation of the UV divergences results in  

M0(z, P, a) ⇠ e�m|z|/a
✓
a2

z2

◆2�end

after re-summation of one loop result resulting exponentiation 

• J.G.M.Gatheral,Phys.Lett.133B,90(1983) 

•  J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984), 

• G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987). 

Multiplicatively renormalizable

UV behaviour



Consider the ratio

UV divergences will cancel in this ratio resulting a 
renormalization group invariant (RGI) function

Mp(0, 0) = 1 Isovector matrix element

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

The lattice regulator can now be removed

Mcont(⌫, z23) Universal independent of the lattice



Polynomial corrections to the Ioffe time PDF may be suppressed 

A. Radyushkin Phys.Lett. B767 (2017)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005 

M(⌫, z2) =

Z 1

0
d↵C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +

1X

k=1

Bk(⌫)(z
2)k

Bk(⌫)(z
2)k ⇠ O(⇤2k

qcd)

Polynomial corrections will vanish in the z2 = 0 limit 

http://dx.doi.org/10.1007/JHEP04(2014)005


• Compute matrix elements in lattice QCD


• Optimal interpolating fields to isolate the ground state matrix element requires 
computation of many correlations functions. This task is dominated by dot-products 
which are typically not optimally implemented


• Solution of an inverse problem to obtain the PDF from lattice QCD data


• Controling  the polynomial corrections is required for proper estimation of systematic 
errors. This in turn implies the need for very fine lattice spacings.

Factorization:

M(⌫, z2) =

Z 1

0
dx q(x, µ)K(x⌫, z2µ2) +O(z2⇤2

qcd)

perturbative kernel (known to NLO)

Challenges:



Project Goals
• Create pseudo-data using the above model


• Explore various options for parametrizing the transverse structure of the 
proton


• Develop methods that allow for reliable extraction of the PDF using pseudo-data


• Understand the systematics of the PDF extraction 


• Optimize the codes for computing the relevant matrix elements from lattice QCD


• Support goes to:


•  1 graduate student to work on the modeling (J. Karpie)


• 1 postdoc W&M to work on the LQCD code optimization (E. Romero)

Karpie et. al JHEP 1904 (2019) 057 



–Eloy Romero

Matrix Element computation



Hadron correlation functions

One of the LQCD goals is to predict low-energy hadron spectrum of nuclei

That means measuring the two-point correction functions of field

operators with specific quantum numbers

C(t0, t) = h�(t0)�†
(t)i

In Monte-Carlo calculations, the physical relevant signal in correlation

functions falls exponentially and is rapidly dominated by statistical

fluctuations

Operators that create low-lying energy eigenstates quickly improve the

quality of the data extracted exponentially

Smearing methods project the operator on the low-energy states and

make computationally feasible the evaluation of the correlation functions

�̃(t) = ⇤(t)�(t)⇤(t), ⇤(t) = V (t)V †
(t), C(t0, t) ⇡ h�̃(t0)�̃†

(t)i

The computational cost is dominated by the creation and contraction of

tensors with sizes of the smearing projection rank

CNF’19 1/6



Higher-order Singular Value Decomposition

⌧ = (U1,U2, . . . ,Ud) · s

where Ui are unitary matrices and s is the core tensor.

HOSVD accelerates the contractions of tensors if near null
rows, columns and fibers can be dropped from the core tensors

CNF’19 2/6



Higher-order Singular Value Decomposition

⌧ = (U1,U2, . . . ,Ud) · s

where Ui are unitary matrices and s is the core tensor.

Example from one of the generated tensors:

⌧ s

CNF’19 3/6



Higher-order Singular Value Decomposition

⌧ = (U1,U2, . . . ,Ud) · s

where Ui are unitary matrices and s is the core tensor.

HOSVD accelerates the contractions of tensors if near null
rows, columns and fibers can be dropped from the core tensors

In the studied cases, the core tensors can be reduced 20% in
dimension

But to keep the symmetries of the original tensors requires
contracting the core tensors six times per original contraction

At the end, we expect modest reduction of time, about 2-3
times

CNF’19 4/6



Smearing basis sparsification

Instead of sparsifying the tensors, we propose to sparsify the
smearing basis V (t) that creates the tensors

The smearing basis consist of the eigenvectors of the lattice
Laplacian with the smallest energies

On the local scale those eigenvectors look similar (local coherence)

Given a regular partition of a lattice with fully connected
components, the eigenvectors can be approximated as the linear
combinations of vectors with support on one of the components

CNF’19 5/6



Smearing basis sparsification

We are able to generate a new basis Ṽ (t) that has similar spatial
distribution to the original one, and

lower energy eigenvectors are better represented

0 10 20 30
0

0.5

1

·10�3

Distance in lattice units (d)

 
(d

)

original basis v
sparsify basis ṽ

0 50 100

0.75

0.8

0.85

0.9

i-th column of the original basis, vi

co
s
\(

ṽ,
v i
)

 (d) =
s X

|x�y|=d, ↵2C , iK

|vx↵iv
†
y↵i |2.

This basis will accelerate the contractions 16-64 times!
CNF’19 6/6
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Alexander Rothkopf 
Savas Zafeiropoulos

Inverse Problem
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Model for lattice matrix elements

Factorization:

M(⌫, z2) =

Z 1

0
dx q(x, µ)K(x⌫, z2µ2) +O(z2⇤2

qcd)

M(⌫, z2) = N

Z 1

0
dx q(x, µ)K(x⌫, z2µ2)e�z2⇤2x(1�x)

Priomordial TMD

perturbative kernel (known to NLO)



• Use the  fenomenological PDFs from CJ15, NNPDF, etc. 
for q(x,μ)


• Explore models for the “TMD” that produce data that look 
similar to the lattice QCD results


• Reconstruct the PDF from mock matrix element data and 
assess the fidelity of the reconstruction by comparing 
with the known input PDF

M(⌫, z2) = N

Z 1

0
dx q(x, µ)K(x⌫, z2µ2)e�z2⇤2x(1�x)
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Lattice QCD result  
Orginos et al. (Phys.Rev. D96 (2017) no.9, 094503 )

Mock data  produced by model 
using CJ15 pdfs ( μ=2 GeV)

LO kernel
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Methods to be studied
• Backus-Gilbert 

• Bayesian reconstruction 

• Neural network parametrization 

• Simple functional form parameterizations 

• Understand how to properly handle and remove the 
polynomial corrections.



Some tests 
Karpie et. al JHEP 1904 (2019) 057 

Ignoring (z2) corrections
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Figure 6. x-space PDF’s reconstructed using the Backus-Gilbert (BG) method from N⌫ = 12
Ioffe-time data points on the interval ⌫ = [0, 10] (top) as well as the input data (gray crosses)
compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels. The
plots in the left column show the results for mock data based on a phenomenological PDF, while the
right column from the modified scenario where the PDF vanishes at the origin. The reconstruction
was performed with preconditioning exponents a = �0.35 and b = 2 for scenario A and a = 0.3 and
b = 2 for scenario B.

Therefore, we conclude that extending the range of ⌫ slightly beyond ⌫ = 10 will have only
small improvement in the determination of the PDF. Our conclusion from this analysis is
that 12 points for ⌫ 2 [0, 10] seems to be adequate to obtain a good reconstruction of the
underlying PDF. This finding is rather encouraging for present day calculations as it is
possible to cover the range of ⌫ 2 [0, 10] with about 12 points in lattice QCD calculations.

4.2 Neural network reconstruction

In this section, the neural network method described above is tested to reconstruct the
mock PDFs. The data used for this reconstruction is the mock scenario A and B in the
smallest range of ⌫, ⌫ 2 [0, 10], discretized into N⌫ = 12 points. For this study, we chose
the hyperbolic tangent as activation function for all the nodes in the hidden layers. The
activation function for the final layer is linear with the threshold value fixed to zero. For a

– 21 –



Neural-Network reconstruction

...

... . . . ...
x

⇠(2)1

⇠(2)2

⇠(2)N2

⇠(3)1

⇠(3)N3

⇠(L�1)
1

⇠(L�1)
NL�1

q(x)

Input layer Ouput layer

1 � N2 � N3
. . . NL�1 � 1

Hidden layers

Figure 3. A neural network can be used as a general parametrization of an unknown function from
IRN1 ! IRNL . For the case of a PDF, a single valued function of a single argument, the input and
output layers have only one neuron.

A neural network can be used to perform a regression by choosing the thresholds
and weights with a training procedure. During the training procedure, the weights and
thresholds are modified to minimize some error function, which describes the difference
between the response of the neural network and some desired output. When using a neural
network to perform a statistical regression, a common choice of error function is the �2

function, e.g.

�2({w}, {✓}) =
NX

k=1

�
Qk �

Z 1

0
dxKk(x)h(x; {w}, {✓})

�2
/�2

k , (3.22)

where Qk are N data points with standard deviations �k and h is the output layer of the
neural network given an input layer x, weights {w}, and thresholds {✓}. Using a neural
network to parametrize the unknown function may result in a �2({w}, {✓}) with a large
number of local minima. Some these local minima are trivial multiplicities due to symme-
tries a neural network has under permutations of the weights and thresholds. However, the
possibility of multiple non-trivial local minima exists resulting in many realizations of the
network that reproduce the data equally well. In these cases special care has to be taken to
avoid “over-fitting” and several methods to do so have been developed in the literature [47].

These roughly equivalent minima can be found by a training procedure such as a
genetic algorithm. A genetic algorithm is an iterative process based upon the idea of
natural selection. Each iteration, also called a generation, begins with a sample of possible
networks, called a population. A fitness function is evaluated for each of the networks, which
in this case is the error function �2({w}, {✓}). Those networks which are the “least fit”, i.e.
largest �2, are removed from the population. The surviving population is then “mutated”
by randomly changing their parameters, i.e. weights and thresholds, to create the starting
population for a new generation. This procedure is iterated for enough generations that a
final population covers a sufficient number of minima with sufficiently small values of the
error function.

The genetic algorithm used in this study is based upon simulated annealing. The initial

– 13 –

Flexible parametrization of q(x)

Karpie et. al JHEP 1904 (2019) 057 
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Figure 9. The genetically trained neural nets. The blue band is the original data. The red band
is the reconstructed PDF with statistical and systematic errors. The left column is with NNPDF
data. The right column is with modified data. The first row has a network geometry of 1-3-1. The
second row has a geometry of 1-4-1. The third row has a geometry of 1-2-2-1.

function defined in Eq. (1.4), the preconditioning function for scenario A with a = �0.25

and b = 2 and for scenario B with a = 0.3 and b = 2. Both of these cases were tested on the
1-3-1 geometry. The reconstructed PDFs, shown in Fig. 11, are not significantly different
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Summary

• Ideas for improving the efficiency of the matrix element 
computation have been developed


• Study of their performance is under way


• We have constructed models for producing mock data to 
study the effectiveness of various methods for solving the 
inverse problem at hand 


• Study the fidelity of the reconstruction is under way 


