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lNtroauction

Goal: Compute hadron structure properties from QCD
« Parton distribution functions (PDFs)

Operator product: Mellin moments are local matrix elements that can be computed in
Lattice QCD

e Power divergent mixing limits us to few moments
Few years ago X. Ji suggested an approach for obtaining PDFs from Lattice QCD

First calculations already available X.Ji, Phys.Rev.Lett. 110, (2013)

Y.-Q.Ma J.-W. Qiu (2014) 1404.6860
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)

C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)

A new approach for obtaining PDFs from LQCD introduced by A. Radyushkin

A. Radyushkin Phys.Lett. B767 (2017)

Hadronic tensor methods | |
K-F Liu et al Phys. Rev. Lett. 72 (1994) , Phys. Rev. D62 (2000) 074501 Ma and Qiu : arXiv:1709.03018

Detmold and Lin 2005
M. T. Hansen et al arXiv:1704.08993.
UKQCD-QCDSF-CSSM Phys. Lett. B714 (2012), arXiv:1703.01153



http://arxiv.org/abs/arXiv:1709.03018

Pseudo-PDFs

Unpolarized PDFs proton:

M (z,p) = (p|(0)v* E(0, z; A)v(2)|p) E(0, 25 A) = Pexp [_ig / Cdz, Ag(z’)Ta]
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Ma(zvp) ZQPQMP(_(Zp)v _ZQ) T ZQMZ(_(Zp)a _22)

1
M+(Zap) = 2p+./\/lp(—p+z_, 0) My(—p4+2-,0) = /1 dr f(x) e "WP+3-
7 0 M,(—pz,—2?) Iisalorentzinvariant therefore

computable in any frame

v = —zp loffe time

0 0 Goal:
/ Compute PDFs with Lattice QCD using
space like separations z
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My(v.) = [ daCla 2 0 () Qav. ) +O(A%,)

Q(v, ) is called the loffe time PDF

V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

1
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Matching to MS

Radyushkin Phys.Rev. D98 (2018) no.1, 014019
lzubuchi et al. Phys.Rev. D98 (2018) no.5, 056004
/Zhang et al. Phys.Rev. D97 (2018) no.7, 074508



UV behaviour

One loop calculation of the UV divergences results in

2

) 2'Ve'n,d
MO(Z,P, CL) N 6—m|z|/a, (a )

after re-summation of one loop result resulting exponentiation

- J.G.M.Gatheral,Phys.Lett.133B,90(1983)
J.Frenkel, J.CTaylor,Nucl.Phys.B246,231(1984),
«  G.PKorchemsky, AV.Radyushkin,Nucl.Phys.B283,342(1987).

Multiplicatively renormalizable



| | M, (v, 22
Consider the ratio M (v, Z%) — ( Zg)
3

M., (0, 25)

UV divergences will cancel in this ratio resulting a
renormalization group invariant (RGI) function

The lattice regulator can now be removed

M (v, 23) Universal independent of the lattice

My(0,0) =1  |sovector matrix element
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do €(a, 2212, o (1)) Q(av, 1) + Z Bi(v)(2°)"
k=1

M(v, 22) = /O

Bi(v)(2")" ~ O(Ageq)

qcd

Polynomial corrections to the lofte time PDF may be suppressed

B. U. Musch, et al Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005

A. Radyushkin Phys.Lett. B767 (2017)

Polynomial corrections will vanish in the z2 = O [imit


http://dx.doi.org/10.1007/JHEP04(2014)005

Factorization:

1
M(v, 2%) :/0 dx q(x, 1) K(zv, 22 p%) + O(2% A )

perturbative kernel (known to NLO)

Challenges:

e Compute matrix elements in lattice QCD

e Optimal interpolating fields to isolate the ground state matrix element requires
computation of many correlations functions. This task is dominated by dot-products
which are typically not optimally implemented

e Solution of an inverse problem to obtain the PDF from lattice QCD data

e (Controling the polynomial corrections is required for proper estimation of systematic
errors. This in turn implies the need for very fine lattice spacings.



Project Goals

Create pseudo-data using the above model

e Explore various options for parametrizing the transverse structure of the
proton

Develop methods that allow for reliable extraction of the PDF using pseudo-data
Understand the systematics of the PDF extraction Karpie et. al JHEP 1904 (2019) 057
Optimize the codes for computing the relevant matrix elements from lattice QCD
Support goes to:

e 1 graduate student to work on the modeling (J. Karpie)

* 1 postdoc W&M to work on the LQCD code optimization (E. Romero)



Matrix Element computation

—Eloy Romero



Hadron correlation functions

CNF’'19

One of the LQCD goals is to predict low-energy hadron spectrum of nuclei

That means measuring the two-point correction functions of field
operators with specific quantum numbers

C(t',t) = (x(t)x' (1))

In Monte-Carlo calculations, the physical relevant signal in correlation
functions falls exponentially and is rapidly dominated by statistical
fluctuations

Operators that create low-lying energy eigenstates quickly improve the
quality of the data extracted exponentially

Smearing methods project the operator on the low-energy states and
make computationally feasible the evaluation of the correlation functions

(1) = O()x(0)B(t), O(t) = V())VI(t), C(¢, 1) = ()X (1))

The computational cost is dominated by the creation and contraction of
tensors with sizes of the smearing projection rank
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Higher-order Singular Value Decomposition

T:(Ul,UQ,...,Ud)-S

where U; are unitary matrices and s is the core tensor.

m HOSVD accelerates the contractions of tensors if near null
rows, columns and fibers can be dropped from the core tensors

CNF'19 2/6



Higher-order Singular Value Decomposition

T = (U, Us,.

Example from one of the generated tensors:
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Higher-order Singular Value Decomposition

T:(Ul,UQ,...,Ud)-S

where U; are unitary matrices and s iIs the core tensor.

m HOSVD accelerates the contractions of tensors if near null
rows, columns and fibers can be dropped from the core tensors

m In the studied cases, the core tensors can be reduced 20% in
dimension

m But to keep the symmetries of the original tensors requires
contracting the core tensors six times per original contraction

m At the end, we expect modest reduction of time, about 2-3
times

CNF'19 4/6



Smearing basis sparsification

CNF'19

Instead of sparsifying the tensors, we propose to sparsify the
smearing basis V/(t) that creates the tensors

The smearing basis consist of the eigenvectors of the lattice
Laplacian with the smallest energies

On the local scale those eigenvectors look similar (local coherence)
Given a regular partition of a lattice with fully connected

components, the eigenvectors can be approximated as the linear
combinations of vectors with support on one of the components
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Smearing basis sparsification

m We are able to generate a new basis V/(t) that has similar spatial
distribution to the original one, and

m lower energy eigenvectors are better represented
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m [ his basis will accelerate the contractions 16-64 times!
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Factorization:

1
M(v, 2°) :/0 dx q(x, ) K(zv, 2° %) + O(22A7.4)

perturbative kernel (known to NLO)

Model for lattice matrix elements

1
Mv,2%) = N [ dwale,p)Kav, e Vo0
0

Priomordial TMD



1
M(v,22) = N [ dwale,p)Kav, e Vo0
0

e Use the fenomenological PDFs from CJ15, NNPDF, etc.
for q(x,p)

 Explore models for the “TMD?” that produce data that look
similar to the lattice QCD results

e Reconstruct the PDF from mock matrix element data and
assess the fidelity of the reconstruction by comparing
with the known input PDF
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LO kernel
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Vlethods to be studied

Backus-Gilbert

Bayesian reconstruction

Neural network parametrization

Simple functional form parameterizations

Understand how to properly handle and remove the
polynomial corrections.



Some tests

Karpie et. al JHEP 1904 (2019) 057

Ignoring (z2) corrections
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Figure 6. z-space PDF’s reconstructed using the Backus-Gilbert (BG) method from N, = 12
Ioffe-time data points on the interval v = [0,10] (top) as well as the input data (gray crosses)
compared to the data arising from the reconstructed PDF (red crosses) in the bottom panels. The
plots in the left column show the results for mock data based on a phenomenological PDF, while the
right column from the modified scenario where the PDF vanishes at the origin. The reconstruction
was performed with preconditioning exponents a = —0.35 and b = 2 for scenario A and a = 0.3 and
b = 2 for scenario B.



Neural-Network reconstruction

Flexible parametrization of q(x)

Karpie et. al JHEP 1904 (2019) 057



Karpie et. al JHEP 1904 (2019) 057
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Figure 9. The genetically trained neural nets. The blue band is the original data. The red band
is the reconstructed PDF with statistical and systematic errors. The left column is with NNPDF
data. The right column is with modified data. The first row has a network geometry of 1-3-1. The
second row has a geometry of 1-4-1. The third row has a geometry of 1-2-2-1.



Summary

e |deas for improving the efficiency of the matrix element
computation have been developed

e Study of their performance is under way

e \We have constructed models for producing mock data to

study the effectiveness of various methods for solving the
iInverse problem at hand

e Study the fidelity of the reconstruction is under way



