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Data Visualization and New Initiatives  
in Doubly Virtual Compton Scattering 

• Two subprojects—discuss then serially
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Data Visualization for here 
• There is flow of data from JLab and 

other labs that is already significant 
and whose increase in the future will 
also be significant. 


• Currently, much data is presented as 
a many row by many column grid of 
small two-dimensional plots.


• Maybe very exciting, and presentation 
as grid of small plots (like postage 
stamps) may be necessary to get all 
the data shown, but makes the data 
hard to see and makes unexpected 
patterns hard to see
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the

(Dupré et al., 2017,

EPJA 53, 171 )



Data Visualization for here 
• Related problems are addressed, and to some extent solved, in the medical profession, where one often has a 

set of scans which can be presented as a set of fixed direction small two-dimensional images, again looking 
rather like a grid of postage stamps. 


• As example see brain scans at https://brainbrowser.cbrain.mcgill.ca/volume-viewer


• Computer processing turns these into interactive images that can be presented with arbitrary centers, with 
arbitrary scanning planes, and zoomable. We would aim, and be able to do, similar processing of nuclear 
science data.
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• Original scans 
present image in 
y-z plane (in some 
coordinate system) 
for series of values 
of x


• Processed output 
allows viewing 
arbitrary plane for 
arbitrary value of 
third coordinate.



Doubly Virtual Compton Scattering

• Describe first: What it is and why we are interested.


• Process:  �  or �
where one photon is spacelike and one is timelike.


• Main interest: Compton amplitude

e + p → e + p + ℓ+ℓ− γ* + p → γ* + p
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Doubly Virtual Compton Scattering

• Natural sequence from Real Compton Scattering (RCS, both 
photons real) and DVCS (Deeply Virtual Compton Scattering, 
initial photon from electron scattering, final photon real)


• Allows determining Compton Form Factors (related to 
Generalized Parton Distributions) as functions of three 
variables, e.g., �  


• Accesses terms in Compton amplitude that are crucial in 
calculating (viz., fixing subtraction terms) in two-photon 
exchange contributions  (more to come on this)


• Shengying Zhao, 1904.09335v1, argues this experiment, 
DDVCS or VVCS, is feasible at 12 GeV JLab

ℋ(ξ′�, ξ, t)
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• About the subtraction term interests:


• The TPE part of the Lamb shift in muonic (or other!) atoms 
  

• and the e.m. part of the proton-neutron mass difference 
(Cottingham formula) 
 

• both depend on the Compton amplitudes �  
 
 
 
(both photons equally off shell for these applications)

T1,2(ν, Q2)
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FIG. 1: The box diagram for the O(α5) corrections.

The Feynman diagram for the two-photon proton-
structure correction to the Lamb shift is shown in Fig. 1.
To the level of accuracy needed here, all external lines
have zero three-momentum. The blob corresponds to
off-shell forward Compton scattering, given in terms of
the Compton tensor

Tµν(p, q) =
i

8πM

∫
d4x eiqx⟨p|Tjµ(x)jν(0)|p⟩

=

(
−gµν +

qµqν

q2

)
T1(ν, Q2)

+
1

M2

(
pµ − p · q

q2
qµ

)(
pν − p · q

q2
qν

)
T2(ν, Q2), (6)

where q2 = −Q2, ν = p · q/M, and M is the nucleon
mass. A spin average is implied and the state normal-
ization is ⟨p|p′⟩ = (2π)3 2E δ3( p⃗ − p⃗′). The functions
T1,2(ν, q2) are each even in ν and their imaginary parts
are related to the structure functions measured in elec-
tron or muon scattering by

Im T1(ν, Q2) =
1

4M
F1(ν, Q2),

Im T2(ν, Q2) =
1

4ν
F2(ν, Q2), (7)

with ν > 0 and where F1,2 are standard [15].

After doing a Wick rotation, where q0 = iQ0 and Q⃗ =
q⃗, one obtains the O(α5) energy shift as

∆E =
8α2m

π
φ2

n(0)
∫

d4Q

×
(Q2 + 2Q2

0)T1(iQ0, Q2)− (Q2 − Q2
0)T2(iQ0, Q2)

Q4(Q4 + 4m2Q2
0)

,

(8)

where m is the lepton mass, and φ2
n(0) = m3

r α3/(πn3)
with mr = mM/(M + m).

The Ti are obtained using dispersion relations. Regge
arguments [16] suggest that T2 satisfies an unsubtracted
dispersion relation in ν at fixed Q2, but that T1 will re-
quire one subtraction. Before proceeding, we will note
that the Born terms, obtained from the elastic box and
crossed box of Fig. 2 and the vertex function Γµ =

γµF1(Q2) + (i/2M)σµνqνF2(Q2) for an incoming pho-
ton, are

TB
1 (q0, Q2) =

1

4πM

{
Q4G2

M(Q2)

(Q2 − iε)2 − 4M2q2
0

− F2
1 (Q2)

}

,

TB
2 (q0, Q2) =

MQ2

π(1 + τp)

G2
E(Q2) + τpG2

M(Q2)

(Q2 − iε)2 − 4M2q2
0

, (9)

where τp = Q2/(4M2), and the electric and magnetic
form factors are

GE(Q2) = F1(Q2)− τpF2(Q2),

GM(Q2) = F1(Q2) + F2(Q2). (10)

The Born terms are reliable for obtaining the imaginary
parts of the nucleon pole terms, but not reliable in gen-
eral, since the given vertex assumes the incoming and
outgoing nucleons are both on shell.

Calling the first term in TB
1 the pole term, one can split

the whole of T1 into pole term and non-pole terms,

T1(q0, Q2) = T
pole
1 + T1 . (11)

The pole term alone evidently allows an unsubtracted
dispersion relation, and this term calculated from the
dispersion relation simply reproduces itself. With a once
subtracted dispersion relation for T1, one has

T1(q0, Q2) = T
pole
1 (q0, Q2) + T1(0, Q2)

+
q2

0

2πM

∫ ∞

νth

dν
F1(ν, Q2)

ν(ν2 − q2
0)

. (12)

The nucleon pole is isolated in T
pole
1 and the integral

begins at the inelastic threshold νth = (2Mmπ + m2
π +

Q2)/(2M). Similarly, as TB
2 contains only a pole term,

T2(q0, Q2) = TB
2 (q0, Q2) +

1

2π

∫ ∞

νth

dν
F2(ν, Q2)

ν2 − q2
0

. (13)

With

∆E = ∆Esubt + ∆Einel + ∆Eel , (14)

we obtain

∆Esubt =
4πα2

m
φ2

n(0)
∫ ∞

0

dQ2

Q2

γ1(τℓ)√
τℓ

T1(0, Q2) , (15)
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FIG. 2: Elastic contributions to the box diagram.
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Doubly Virtual Compton Scattering

• The �  are gotten from dispersion relations, but the 
dispersion relation for �  requires a subtraction.


• Bottom line meaning: need to know �  for � .


• Ugh: Not experimentally measurable. 
 
(or maybe one can dream of positronium-proton scattering with both electron and positron 
interacting: but … )

T1,2
T1

T1(0,Q2) Q2 > 0
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Doubly Virtual Compton Scattering
• But something is known: the leading term in a low 

momentum expansion is  
                          �  

where �  is the nucleon’s magnetic polarizability (known).


• Further term available theoretically for the proton, from 
Birse and McGovern and chiral perturbation theory, 
 

                      �  

 
where �

lim
Q2→0

T1(0,Q2) =
Q2

e2
βM

βM

T1(0,Q2) =
Q2

e2
βM (1 −

Q2

M2
β

+ …)
M2

β = (460 ± 100 𝖬𝖾𝖵)2
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Doubly Virtual Compton Scattering

• Should want direct experimental measurement


• Possible from VVCS,  but not just from RCS or DVCS.


• The whole story: Compton scattering (unpolarized) expands 
generally in terms of 5 Compton amplitudes, 
 
                  ↔   �  

 
with �  given by functions times tensors with Lorentz indices

ū(p′�) Mμν(p, q, q′�) u(p) = i∫ d4x e−iqx⟨p′�|T jμ(x)jν(0) |p⟩

Mμν
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Doubly Virtual Compton Scattering
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Mμν = ∑
i={1,2,3,4,19}

Bi(q2, q′�2, q ⋅ q′�, q ⋅ P) Tμν
i

Tμν
1 = − q ⋅ q′� ̂gμν

Tμν
2 = 4 [−(q ⋅ P)2 ̂gμν − q ⋅ q′� ̂Pμ ̂Pν]

Tμν
3 = q2q′�2 ̂gμν + q ⋅ q′� ̂qμ ̂q′�ν

Tμν
4 = 2 [q ⋅ P(q2 + q′�2) ̂gμν + q ⋅ q′�( ̂Pμ ̂q′ �ν + ̂qμ ̂Pν)]

Tμν
19 = 4 [q2q′ �2 ̂Pμ ̂Pν − q ⋅ P q2 ̂Pμ ̂q′�ν − q ⋅ P q′�2 ̂qμ ̂Pν + (q ⋅ P)2 ̂qμ ̂q′�ν]

̂gμν = gμν −
q′�μqν

q ⋅ q′�
̂Pμ = Pμ −

P ⋅ q
q ⋅ q′�

q′�μ ̂Pν = Pν −
P ⋅ q
q ⋅ q′�

qν

̂qμ = qμ −
q2

q ⋅ q′�
q′�μ ̂q′�ν = q′�ν −

q′�2

q ⋅ q′�
qν



Doubly Virtual Compton Scattering

• For RCS, only #1 and #2 contribute. (Check it out.)


• For DVCS, also #4 contributes.  (Ditto.)


• Need VVCS to involve #3 and #19.


• Importance seen by looking at expansion
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Doubly Virtual Compton Scattering
• Can low-momentum-expand the functions � , e.g., 

 
� 


• The amplitudes we want are forward limits of the � 


• So work out the (confusingly named) amplitude � , 
 
    �  
 
and 
     � 


• Need �   

Bi

Bi(q2, q′�2, q ⋅ q′ �, q ⋅ P) = bi0 + biq(q2 + q′�2) + biXq ⋅ q′� + biν2(2Mν)2 + …

Bi

T1

T1(ν, Q2)/2M = − Q2B1 + 4M2ν2B2 − Q4B3 + 4MνQ2B4

TNB
1 (0,Q2) =

2MQ2

αem
βM + Q4[2b1q + b1X − b30] + 𝒪(Q6)

B3
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VVCS—practical matters

• The BH amplitudes are not trivial.  Pure BH must be 
calculated, as well as BH-Compton interference terms.


• Well under way.
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VVCS—practical matters

• �   looks like 
 
 
 

• Chosen 8 independent variables are 
          �  
             � 


• Observe only proton, so integrate over lepton angles �  
.

e + p → e + p + ℓ+ℓ−

s = (k + p)2, Q2 ≡ − (k − k′�)2, W2 = (q + p)2,
t = Δ2, M2

ℓℓ = q′ �2, Φ, θℓ, φℓ

θℓ, φℓ
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VVCS—practical matters

• Regarding amplitudes and squares of them, as example 
take spacelike BH


• Electron side squared has lepton tensor 
                         � 


• Hadron side has hadron tensor 
                             � 


• Remains part from photons connected to final leptons, 
which we will call �

Lμν = 4kμkν − Q2gμν

Hαβ = 4
G2

E(t) + τG2
M(t)

1 + τ
pα pβ − Q2 G2

M(t)gαβ

ℳ
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VVCS—practical matters
• One term is 

      �  

with  

           � 


• and further  
                         �  

 

                          �  

1
4π ∫

+1

−1
d cos θl ∫

2π

0
dϕl gμν gαβ ℳμα,νβ = C(1)

a + C(2)
a

1
ββQ

log (
1 + ββQ

1 − ββQ )
β2 ≡ 1 −

4m2
l

q′�2
, β2

Q ≡ 1 +
4Q2t

(q′�2 + Q2 − t)2

C(1)
a = 16 {−1 +

4(Q2 − 2m2
l )(t + 2m2

l )
(q′�2 + Q2 − t)2 (1 − β2β2

Q) }
C(2)

a =
16

(q′�2 + Q2 − t)2 {q′�4 + (Q2 − t)2 + 4m2
l (q′�2 + Q2 − t) − 8m4

l }
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VVCS—practical matters

• Have other terms a well for the pure BH


• To go: interference terms and exploring good kinematic 
regions to isolate �  and/or �  . B3 b30
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Most recent proton radius plot
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0.80 0.82 0.84 0.86 0.88 0.90 0.92

proton charge radius (fm)

old ep atomic plus
scattering avg.,
0.8751 (61) fm
(CODATA 2014)

µH Lamb shift
(2010,2013)

Post 2016 electronic results, with older benchmarks

1S-2S + 2S-4P

1S-2S + 1S-3S

1S-2S + 1S-3S

2S-2P

1S-2S + 1S-3S

ep scatt (JLab) PRad 2018

MPQ 2018(d)

York 2018

MPQ 2018

LKB 2018

MPQ 2017

ep scatt (Mainz) ISR 2019


