QCD theory and machine learning for global analysis

Nobuo Sato

Supported by CNF19-06

Femtography 2019 Washington DC

Personnel

QCD theorists

- Nobuo Sato PI (ODU)
- Wally Melnitchouk Co-PI (JLab)
- Andreas Metz (Temple University)
- Ian Cloët (ANL)

Machine learning scientists

- Yaohang Li (ODU)
- Yasir Awadh Alanazi (ODU)
- Manal Almaeen (ODU)
- Michelle Kuchera (Davidson College)
- Raghu Ramanujan (Davidson College)
- Meg Houck (Davidson College)
- Eleni Tsitinidi (Davidson College)

Motivations

To build the next generation of **global QCD analysis** tools using **machine learning** (ML) techniques to study the **quantum probability distributions** (QPD) characterizing the internal structure of the nucleon.

List of Proposed Milestones and Deliverables

Prototypes of networks that map collinear PDFs into inclusive electron-proton scattering observables

• Web interface for user access (visualization)

TMDs and GPDs from nonperturbative models

Progress (May 10 – Aug 12, 2019)

Machine learning prototypes

- Prototypes for the NN inverse mappings
- Validation tests to quantify quality of the mappings

QCD models

 Numerical implementation of DDY cross section using model GTMD (under development)

Universality \rightarrow the predictive power of QCD

■ lepton-hadron reactions (COMPASS, JLab, **EIC**)

$$\sigma_{l+P \to l+H+X}^{\text{EXP}} = \boxed{C_{l+k \to l+k+X} \otimes \text{PDF}_P} \otimes \text{FF}_H$$

Universality \rightarrow the predictive power of QCD

lepton-hadron reactions (COMPASS, JLab, EIC)

$$\sigma_{l+P\to l+H+X}^{\text{EXP}} = \underbrace{C_{l+k\to l+k+X}}_{\text{PDF}} \otimes \underbrace{\text{PDF}_P}_{\text{FF}}$$

hadron-hadron reactions (LHC)

$$\sigma_{P+P \to l+\bar{l}+X}^{\text{EXP}} = \underbrace{C_{k+k \to l+\bar{l}+X}}_{\text{PDF}} \otimes \underbrace{\text{PDF}_{P}}_{\text{PDF}}$$

Universality \rightarrow the predictive power of QCD

■ lepton-hadron reactions (COMPASS, JLab, **EIC**)

$$\sigma_{l+P \to l+H+X}^{\text{EXP}} = \underbrace{C_{l+k \to l+k+X}}_{\text{PDF}} \otimes \underbrace{\text{PDF}_P}_{\text{FF}}$$

hadron-hadron reactions (LHC)

$$\sigma_{P+P \to l+\bar{l}+X}^{\text{EXP}} = \underbrace{C_{k+k \to l+\bar{l}+X}}_{\text{PDF}} \otimes \underbrace{\text{PDF}_{P}}_{\text{PDF}}$$

lepton-lepton reactions (Belle)

$$\sigma_{l+\bar{l}\to H+X}^{\mathrm{EXP}} = \underbrace{C_{l+\bar{l}\to k+X}}_{\mathrm{FF}_{H}} \otimes \underbrace{\mathrm{FF}_{H}}_{\mathrm{FF}_{H}}$$

JAM19: Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions

arXiv:1905.03788

NS, Carlota Andres, Jake Ethier, Wally Melnitchouk

PDFs and FFs

The link is not unique

The link is not unique

choice of parametrization

The link is not unique

- choice of parametrization
- factorization accuracy

The link is not unique

- choice of parametrization
- factorization accuracy
- treatment of experimental uncertainties

ML for global analysis

ML for global analysis

Backward mapper

Backward mapper

• What data sets or data points constrain specific QPD?

Backward mapper

• What data sets or data points constrain specific QPD?

How do QPDs depend on the choice of parametrization?

Backward mapper

- What data sets or data points constrain specific QPD?
- How do QPDs depend on the choice of parametrization?
- What additional measurements are needed to resolve QPDs?

Backward mapper

- What data sets or data points constrain specific QPD?
- How do QPDs depend on the choice of parametrization?
- What additional measurements are needed to resolve QPDs?

Forward mapper

Backward mapper

- What data sets or data points constrain specific QPD?
- How do QPDs depend on the choice of parametrization?
- What additional measurements are needed to resolve QPDs?

Forward mapper

Make predictions for future experiments (cross section rates)

First prototypes of backward mappers

Progress

First prototypes of backward mappers

Validation in a controlled test model

Progress

First prototypes of backward mappers

■ Validation in a controlled test model

Blind control test gives accuracy under $1-\sigma$ CL

Progress

First prototypes of backward mappers

■ Validation in a controlled test model

Blind control test gives accuracy under $1-\sigma$ CL

 \blacksquare Code development of Wigner distributions \rightarrow double DY observable

Test model 1D QPD

Parametrization of QPD

$$u(x,Q^2) = N_u(Q^2) x^{\alpha_u(Q^2)} (1-x)^{\beta_u(Q^2)} (1+\gamma_u(Q^2)\sqrt{x} + \delta_u(Q^2) x),$$

$$d(x,Q^2) = N_d(Q^2) x^{\alpha_d(Q^2)} (1-x)^{\beta_d(Q^2)} (1+\gamma_d(Q^2)\sqrt{x} + \delta_d(Q^2) x),$$

Test model 1D QPD

Parametrization of QPD

$$\begin{split} u(x,Q^2) &= N_u(Q^2) \, x^{\alpha_u(Q^2)} (1-x)^{\beta_u(Q^2)} (1+\gamma_u(Q^2)\sqrt{x} + \delta_u(Q^2) \, x), \\ d(x,Q^2) &= N_d(Q^2) \, x^{\alpha_d(Q^2)} (1-x)^{\beta_d(Q^2)} \, (1+\gamma_d(Q^2)\sqrt{x} + \delta_d(Q^2) \, x), \\ p^{(i)} &= \{N^i_{u,d}, \, \alpha^i_{u,d}, \, \beta^i_{u,d}, \, \gamma^i_{u,d}, \, \delta^i_{u,d}\} \\ p(Q^2) &= p^{(0)} + p^{(1)}s(Q^2) \\ s(Q^2) &= \log\left(\frac{\log(Q^2/\Lambda^2_{\text{QCD}})}{\log(Q^2_0/\Lambda^2_{\text{QCD}})}\right). \end{split}$$

Test model 1D QPD

Parametrization of QPD

$$\begin{split} u(x,Q^2) &= N_u(Q^2) \, x^{\alpha_u(Q^2)} (1-x)^{\beta_u(Q^2)} (1+\gamma_u(Q^2)\sqrt{x} + \delta_u(Q^2) \, x), \\ d(x,Q^2) &= N_d(Q^2) \, x^{\alpha_d(Q^2)} (1-x)^{\beta_d(Q^2)} \, (1+\gamma_d(Q^2)\sqrt{x} + \delta_d(Q^2) \, x), \\ p^{(i)} &= \{N^i_{u,d}, \, \alpha^i_{u,d}, \, \beta^i_{u,d}, \, \gamma^i_{u,d}, \, \delta^i_{u,d}\} \\ p(Q^2) &= p^{(0)} + p^{(1)}s(Q^2) \\ s(Q^2) &= \log\left(\frac{\log(Q^2/\Lambda^2_{\rm QCD})}{\log(Q^2_0/\Lambda^2_{\rm QCD})}\right). \end{split}$$

The observable

$$F_{p,d} = F_{p,d}(x, Q^2; u, d)$$

Cross sections 1

parameters 1

Cross sections 1

Cross sections 2

parameters 1

parameters 2

parameters N

Blind control test

Mapping experimental observables to quantum probability distributions

Machine Learning Architectures for predicting QPDs

CNF JLab Theory Center Old Dominion University Davidson College

High-level overview

- Forward:
 - theory → simulation
 → observation
 - Backward:
 - observation → theory

How do experimental observations constrain theoretical models?

• Potential for multiple predictions in the parameter space

NETWORK GRAPH

SUPERVISED LEARNING

Loss function

$$J(w) = f - \hat{f}$$

LOGISTIC REGRESSION

Features

Summation + Nonlinearity

"GoogLeNet network with all the bells and whistles"

Two models:

- 80000 training examples
- 80/20 train/validation split
- Blind test

- 80000 training examples
- 80/20 train/validation split
- Blind test

EBML:

- INPUT: xsec: 126x2 inputs
- 256 10x2 filters
- 3 256 node FCNN layers
- OUTPUT: PDF parameters: 10 outputs, 5 u 5d

1D Convolutions

Input

Feature element calculation: 1*1 + 2*0 + 3*1 = 4

Stride: 1

Latent space

Training data

- 80000 training examples
- 80/20 train/validation split
- Blind test
- EBML: Bagging
 - Trained many independent models
 - Each on subset of data with replacement

Ensemble-based learning

MDN:

- INPUT: xsec: 171x2 inputs
- 3 256 node FCNN layers
- OUTPUT: PDF parameters, std, and probabilities: 10x3 outputs, 5 u 5d

Blind test results

- Blind test:
 - Random cross-section inputs with known outputs
 - Resampling crosssection with added noise
 - Predict parameters
 - Average, std for QPD predictions
- EBML within 1 std

Summary and outlook

Progress

First prototypes for backward mappers has been designed and validated

Projected work to completion (until September 30, 2019)

- Develop the forward mapper and its validation
- Train the mappers on inclusive DIS and bench mark the results with recent JAM results

Future

- Train NNs to additional observables e.g. SIDIS, SIA, DY, DDY, and TMDs, GPDs observables
- Build a web space where all the mappers are available for users