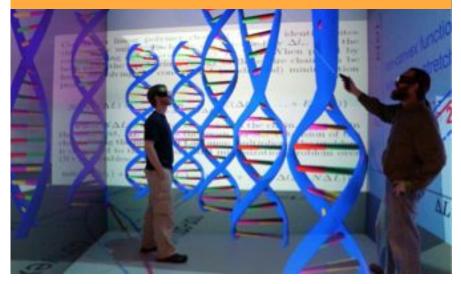
Next-generation Visual Analysis Workspace for Multidimensional Nuclear Femtography Data

CENTER for NUCLEAR FEMTOGRAPHY

PI Name and Institution: Nicholas F. Polys, Virginia Tech

Markus Diefenthaler, Jefferson Lab

Srijith Rajamohan, Virginia Tech


Dmitry Romanov, Jefferson Lab

List of Collaborators:

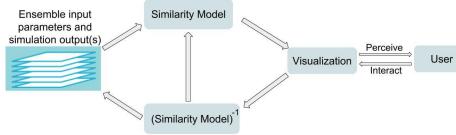
Mai Dahshan, Virginia Tech

JooYoung Whang, Virginia Tech

Virginia Tech

Jefferson Lab

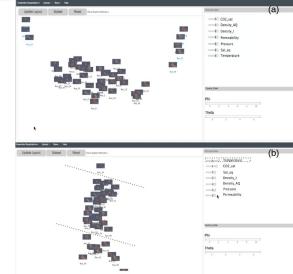
CNF_19_15 : Our exploratory study demonstrates the synergy between **computer science** and **nuclear physics** in the visualization of semi-inclusive deep-inelastic scattering processes and the study of TMD observables.



Next-generation Visual Analysis Workspace for Multidimensional Nuclear Femtography Data

Project Goals:

Using Semantic Interaction to understand particle kinematics


Approach:

- Map particle kinematics into Paraview, VR, Web3D
 - Demonstrate w HERMES data, extend to 12 GeV data
- Export X3D, Cinema visualization
- Instance GLEE for project data sets and user upload

VIRGINIA TECH.

Advanced Research Computing

Polys Rajamohan Diefenthaler Romanov Dashan Whang

Goal:

to explore the application of Semantic Interaction methods to particle factorization

Will we learn anything new?

Approach:

- 1. Use the SIDIS dataset, JLAB 12GeV data
- 2. Create Particle Portraits (Hermes as proxy)
- 3. Load into the GLEE workspace @ VT
- 4. Look for known correlations
- 5. Find new correlations through Semantic Interaction

Exploring the kinematic phasespace of pions and charged kaons in semi-inclusive deep-inelastic scattering (SIDIS).

Starting point:

- Visual representations in ParaView
- SIDIS data from HERMES for charged pions and kaons

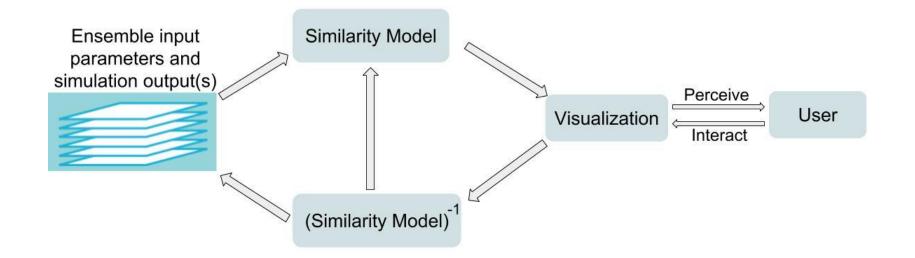
Studied:

- Kinematic correlations (Bjorken-x, z, and Phperp)
- Differences in kinematic correlations between pi+ and K+

Ongoing study:

• Kinematic correlations for various TMD factorization criteria

Semantic Interaction


The user and the machine build a model together: *incrementally formalizing* and emphasizing relationships among data members through the user's interactions.

The Graphically-Linked Ensemble Explorer (GLEE) implements this approach in a WWW framework.

Semantic Interaction

For Exploratory visualization =

under-specified problems + human intuition + computational rigor

Data Preparation

The alignment of information to connect disciplines:

Understanding how to adapt the Multi-Dimensional Scaling projection method of Semantic Interaction to this domain?

- How to visualize observations?
- What factors to include?
- How to weight them?, and
- What distance function should be used ?

Starting with HERMES data

- **Raw quantities**: 1n Columns for different observations (rows)
 - X
 - Z
 - Phperp...
- **Derived quantities**, which are distinguishing factors for factorization studies?
 - TMD factorization: Q² >> P_hperp² / z²
 - qzp := P_hperp^2 / (Q^2 * z^2),
 - Match known 2D histograms per variable

Variable	
Run number	
Burst number	
Event number	
Polarization (beam)	
Polarization (target)	
Q^2	
X	
у	
Phi_s	
epsilon	
Charge	
Pi +/- weight	
Pi 0 weight	
K+/-	
Proton weight	
Z (Pi +/-)	
Z (Pi 0)	
Z (K +/-)	
Z (proton weight)	
P_hperp	
Phi_h	

Cutting up HERMES (for example)

Splitting criteria to find known correlations:

- Originally, there are ~2mil rows in the HERMES data, each row representing the kinematics of a final-state hadron in SIDIS
- 2. filter these rows into *sets* for each particle type:

Pi+, Pi-, K+, K-

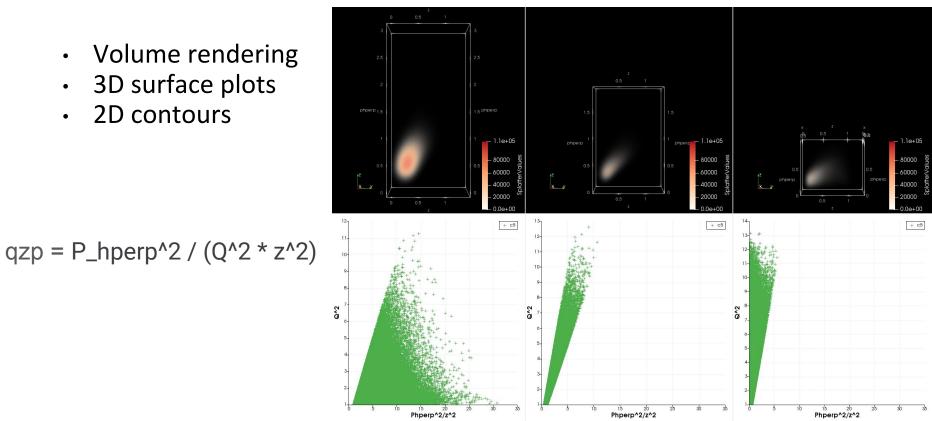
3. For each particle type *set*, divide it into 3 *groups* by the qzp values:

Making Thumbnails

- 1. Choose to make *n* thumbnails for each *group*.
- Let the number of rows in the smallest *group* of the three be *k*. (Smallest in terms of number of rows)
- Randomly select floor(k / n) rows in a group and use these to form a thumbnail. Repeat n times for each group. This results in 3n thumbnails for each particle set. (no same row is selected twice in the entire process.)
- 4. The mean value and standard deviation are calculated and stored for each thumbnail data's individual components.

Paraview and Cinema

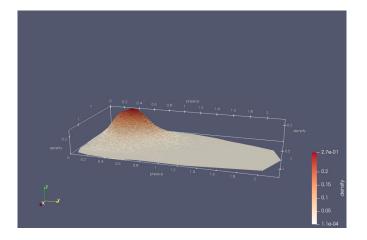
- Paraview.org 5.6 and custom Python scripts
 - Data loading
 - Data binning
 - Visualization mapping (i.e. to color, transparency, ...)
- Export Cinema image sets for use in GLEE workspace
 - <u>https://cinemascience.github.io/</u>
 - <u>https://cinemaviewer.org/</u>
 - GLEE server uses tabular data and Cinema image sets to create the Semantic Interaction Workspace (hosted at VT)

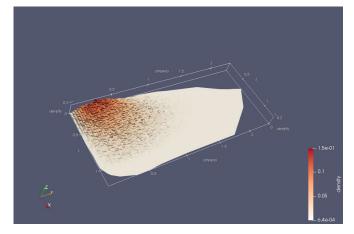


Ideas on the Way

- Volume rendering •
- 3D surface plots •
- 2D contours •

Volume rendering Histograms in 3 space

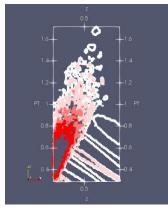

Z vs P_hperp

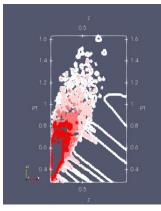

X vs z

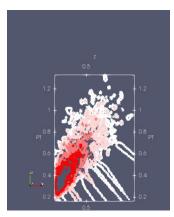
X vs P_hperp

Pi+ (left) vs K+ (right)

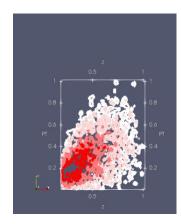
3-D surface histogram

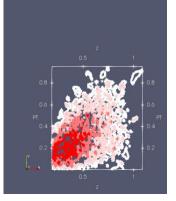



X-axis = ZY-axis = P_hperp

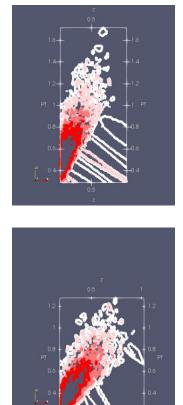

Pi+ density plot

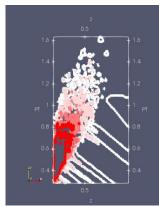
K+ density plot

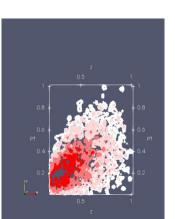

2-D Contour

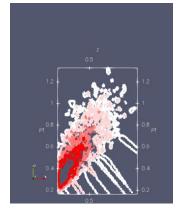


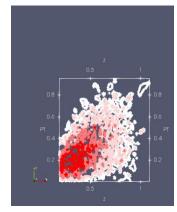
2-D contour plot of **K+** where X-axis = z Y-axis = P_hperp


10799 pts in each thumbnail


Visual Forms: Particle Portraits


Approach: visualize known particle profiles as frequency distributions


- Convert the row data into 2-D point data by letting the x-axis as the Z value of the particle, and the y-axis as the P_hperp value of the particle.
- 2. Using binning with 10000 bins, estimate the density of the points at each point's location.
- 3. Create a contour plot of the density map, and color code it from white to red.
- 4. Show the data axis and save the screenshot.


Sample thumbnails of K+

Semantic Interaction

The user and the machine build a model together: incrementally formalizing and emphasizing relationships among data members through the user's interactions.

The Graphically-Linked Ensemble Explorer (GLEE) implements this approach in a WWW framework.

Similarity Models (MDS)

Weighted MDS - what gets weighted?

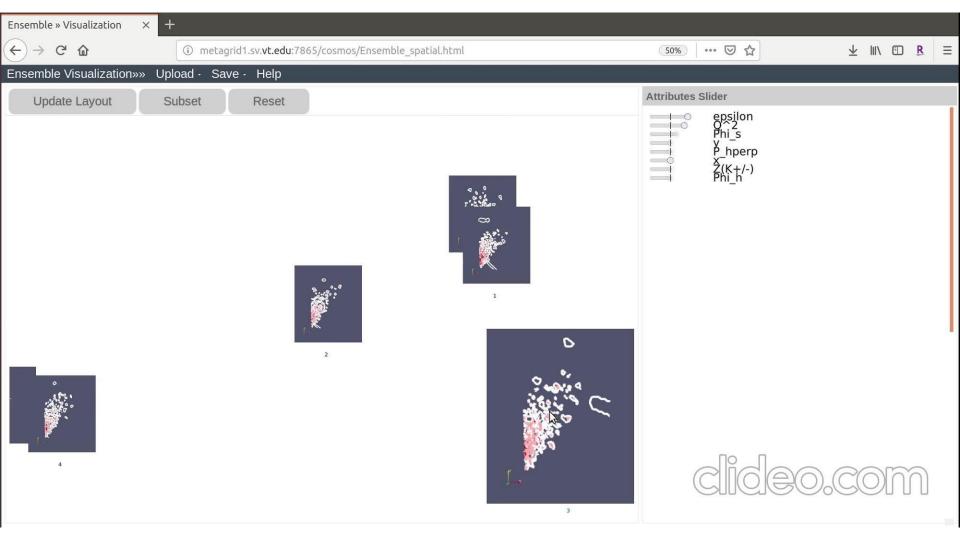
(attributes, components, parameters)?

Thus, we must investigate the distribution of values in across an ensemble and several cuts... and several distance functions

Semantic Interaction w/ GLEE for Hadronic Physics:

- When projecting from High D to Low D
- When projecting from Low D to High D

Terminology clarification

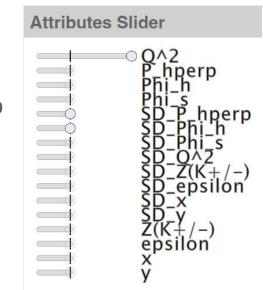

An *Attribute* can have multiple *Components*, and each components have multiple *Parameters* that describe the distribution of that Component across the ensemble

	Attribute 1	Attribute m
Observation1	Component 1, Component 2,	
	Mean and standard deviation of each <i>Component</i> = parameters of that components' distributions	
Observation <i>n</i>		

Model and View

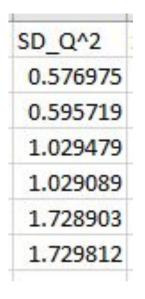
Weighted Multi-Dimensional Scaling (WMDS) can be used to up and down project parameters based on user interaction:

- Include components' Mean and StDev in the High-D parameter model
- Users see sliders for attributes in the GLEE PI window
- Examine appropriate distance function (e.g. Euclidean distance vs. Cosine distance)



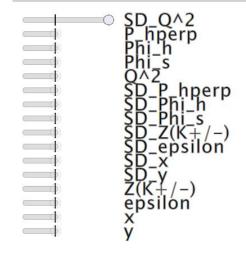
Column Q² & GLEE

Q^2 seems to be quadratically increasing according to qzp

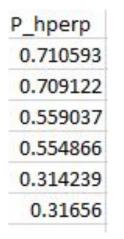



Increasing the Weight for Q² separates the thumbnails quadratically according to qzp

Column SD_Q^2 & GLEE


SD_Q^2 proportionally increases according to qzp

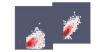
Attributes Slider



Increasing the Weight for SD_Q^2 Separates the thumbnails according to qzp

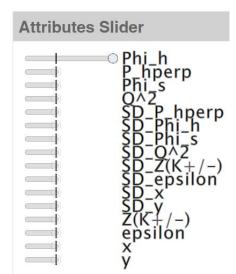
Column P_hperp & GLEE

P_hperp proportionally decreases according To qzp values


Attributes Slider perp hperp epsilon bsilón

> Increasing the Weight for P_hperp separates the thumbnails apart

Column Phi_h & GLEE


Phi_h varies throughout all qzp values

Phi_h 3.145927 3.168318 3.119855 3.15746 3.146924 3.122512

Increasing the Weight for Phi_h scatters the thumbnails

Takeaways

- Novel collaboration across disciplines shows promise;
 'Regularization' is the biggest investment
- The Human IS the Loop
- Semantic Interaction is a semi-supervised approach and we continue to explore and evaluate appropriate factors and distance functions

Next Steps

- Iterate portrait designs to project wrap:
 - Pi+, Pi-, K+, K-
- Iterate MDS models to project wrap
- Study early data from JLAB 12 GeV experiments (e.g., Hall C factorization tests)
 - Study more kinematic correlations and regimes (JLAB-THY-19-2920)
- Evaluate visual and statistical models with domain experts
- Publish
 - Paraview State Files for collaborator use
 - GLEE webservice for user-uploaded data
- Next stage CNF Proposal, EIC proposal