Measurement of ${ }^{3} \mathrm{He}$ Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

Brad Sawatzky
July $31^{\text {st }} 2019$
Jefferson Lab

Parallel Running with d_{2}^{n}

- d_{2}^{n} : Measure neutron g_{2} and d_{2} at high Q^{2}.
- 53 calendar days $5^{\text {th }}$-pass production.
- 3 calendar days at $1^{\text {st }}$-pass for systematics.
- ${ }^{3} \mathrm{He}$ double-polarization asymmetry will run in parallel with these $1^{\text {st }}$-pass systematics measurements.
- No modifications required to any equipment.
- Only requirement is to reposition the spectrometers.

Modern ${ }^{3} \mathrm{He}$ Form Factors

Modern ${ }^{3} \mathrm{He}$ Form Factors

${ }^{3} \mathrm{He}$ Magnetic Form Factor

${ }^{3} \mathrm{He} F_{m}$ modern sum of Gaussians fits.

Form Factors from Cross Sections

- ${ }^{3} \mathrm{He}$ cross section at 1 GeV and 3 GeV .

- Shallow cross section minima are used to extract sharp form factor minima.

Double-Polarization Asymmetry

Polarized ${ }^{3} \mathrm{He}$ Physical Asymmetry at 2.216 GeV

Double-polarization asymmetry at 2.216 GeV . The points show the statistical uncertainty of the mean of each kinematic setting.

- Uncertainties are statistics limited. Systematics are small.
- Offline discussions are ongoing about optimizing these points.
- Highest kinematic may be removed and split into two points to better measure first zero crossing.

Conclusions

- In collaboration with d_{2}^{n} we propose to measure the double-polarization asymmetry of ${ }^{3} \mathrm{He}$ over a range of Q^{2}.
- Run in parallel with $1^{\text {st }}$-pass systematics measurements.
- This will be the first high Q^{2} measurement of ${ }^{3} \mathrm{He}$ form factors using polarization observables.
- Constrain the locations of the diffractive minima.
- Provide new method to hypothesis test theory predictions.
- Determine if polarization observables agree with unpolarized Rosenbluth results.
- Help explain the discrepancies between theoretical predictions and experimental measurements of the ${ }^{3} \mathrm{He}$ form factors.
- History has shown that polarization measurements can reveal problems with cross section extracted form factors (Jones et al. 2000).

Backup Slides

	θ $\left[{ }^{\circ}\right]$	Q^{2} $[\mathrm{GeV}]$	QE Rate $[\mathrm{Hz}]$	Elastic Rate $[\mathrm{Hz}]$	Total Rate $[\mathrm{Hz}]$	Prescale	Final Elastic Rate $[\mathrm{Hz}]$
SHMS	11	0.157	76708	3655	233779	52	70.30
	13	0.22	31469	469	94877	22	21.31
	15	0.286	13820	45.01	41505	10	4.50
	17	0.363	6120	3.03	18363	5	0.61
19	0.517	2691	0.52	8073	2	0.26	
HMS	21	0.612	1200	0.40	3599	1	0.40

Spectrometer Central Kinematics

