Measurement of 3He Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

Brad Sawatzky
July 31st 2019

Jefferson Lab
Parallel Running with d_2^n

- d_2^n: Measure neutron g_2 and d_2 at high Q^2.
- 53 calendar days 5th-pass production.
- 3 calendar days at 1st-pass for systematics.
 - 3He double-polarization asymmetry will run in parallel with these 1st-pass systematics measurements.
 - **No modifications required** to any equipment.
 - Only requirement is to reposition the spectrometers.
Modern 3He Form Factors

3He Charge Form Factor

$|F_{ch}(Q^2)|$ vs $Q^2 (\text{fm}^{-2})$

$Q^2 (\text{GeV})$

Representative Fit Barcus 2019
Uncertainty Band Barcus 2019
Representative Fit Amroun et al. 1994
Uncertainty Band Amroun et al. 1994
CST Marcucci et al 2016
χEFT 500 Marcucci et al 2016
χEFT 600 Marcucci et al 2016

3He F_{ch} modern sum of Gaussians fits.
Modern ^3He Form Factors

^3He Magnetic Form Factor

$|F_m(Q^2)|$

$Q^2 (\text{GeV})$

$Q^2 (\text{fm}^{-2})$

$^3\text{He} F_m$, modern sum of Gaussians fits.
Form Factors from Cross Sections

- ^3He cross section at 1 GeV and 3 GeV.

^3He cross section at 1 GeV.

^3He cross section at 3 GeV.

- Shallow cross section minima are used to extract sharp form factor minima.
Double-polarization asymmetry at 2.216 GeV. The points show the statistical uncertainty of the mean of each kinematic setting.

- Uncertainties are statistics limited. Systematics are small.
- Offline discussions are ongoing about optimizing these points.
 - Highest kinematic may be removed and split into two points to better measure first zero crossing.
Conclusions

- In collaboration with d_2^n we propose to measure the double-polarization asymmetry of ^3He over a range of Q^2.
 - Run in parallel with 1$^{\text{st}}$-pass systematics measurements.
- This will be the first high Q^2 measurement of ^3He form factors using polarization observables.
 - Constrain the locations of the diffractive minima.
 - Provide new method to hypothesis test theory predictions.
 - Determine if polarization observables agree with unpolarized Rosenbluth results.
 - Help explain the discrepancies between theoretical predictions and experimental measurements of the ^3He form factors.
- History has shown that polarization measurements can reveal problems with cross section extracted form factors (Jones et al. 2000).
Backup Slides

<table>
<thead>
<tr>
<th>θ [°]</th>
<th>Q^2 [GeV]</th>
<th>QE Rate [Hz]</th>
<th>Elastic Rate [Hz]</th>
<th>Total Rate [Hz]</th>
<th>Prescale</th>
<th>Final Elastic Rate [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.157</td>
<td>76708</td>
<td>3655</td>
<td>233779</td>
<td>52</td>
<td>70.30</td>
</tr>
<tr>
<td>13</td>
<td>0.22</td>
<td>31469</td>
<td>469</td>
<td>94877</td>
<td>22</td>
<td>21.31</td>
</tr>
<tr>
<td>15</td>
<td>0.286</td>
<td>13820</td>
<td>45.01</td>
<td>41505</td>
<td>10</td>
<td>4.50</td>
</tr>
<tr>
<td>17</td>
<td>0.363</td>
<td>6120</td>
<td>3.03</td>
<td>18363</td>
<td>5</td>
<td>0.61</td>
</tr>
<tr>
<td>19</td>
<td>0.517</td>
<td>2691</td>
<td>0.52</td>
<td>8073</td>
<td>2</td>
<td>0.26</td>
</tr>
<tr>
<td>HMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.612</td>
<td>1200</td>
<td>0.40</td>
<td>3599</td>
<td>1</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Spectrometer Central Kinematics