# Measurement of <sup>3</sup>He Elastic Electromagnetic Form Factor Diffractive Minima Using Polarization Observables

Brad Sawatzky July 31<sup>st</sup> 2019

Jefferson Lab

- $d_2^n$ : Measure neutron  $g_2$  and  $d_2$  at high  $Q^2$ .
- 53 calendar days 5<sup>th</sup>-pass production.
- 3 calendar days at 1<sup>st</sup>-pass for systematics.
  - <sup>3</sup>He double-polarization asymmetry will run in parallel with these 1<sup>st</sup>-pass systematics measurements.
  - No modifications required to any equipment.
  - Only requirement is to reposition the spectrometers.

## Modern <sup>3</sup>He Form Factors



<sup>3</sup>He  $F_{ch}$  modern sum of Gaussians fits.

## Modern <sup>3</sup>He Form Factors



<sup>3</sup>He  $F_m$  modern sum of Gaussians fits.

#### Form Factors from Cross Sections

• <sup>3</sup>He cross section at 1 GeV and 3 GeV.



 Shallow cross section minima are used to extract sharp form factor minima.

## **Double-Polarization Asymmetry**

Polarized <sup>3</sup>He Physical Asymmetry at 2.216 GeV 0.15 0.1 0.05  $\mathsf{A}_{\mathsf{phys}}$ 0 -0.05-0.1-0.15 Q<sup>2</sup> (fm<sup>-2</sup>) 15 5 10 20 25 ſ

Double-polarization asymmetry at 2.216 GeV. The points show the statistical uncertainty of the mean of each kinematic setting.

- Uncertainties are statistics limited. Systematics are small.
- Offline discussions are ongoing about optimizing these points.
  - Highest kinematic may be removed and split into two points to better measure first zero crossing.

### Conclusions

- In collaboration with d<sup>n</sup><sub>2</sub> we propose to measure the double-polarization asymmetry of <sup>3</sup>He over a range of Q<sup>2</sup>.
  - Run in parallel with  $1^{st}$ -pass systematics measurements.
- This will be the first high Q<sup>2</sup> measurement of <sup>3</sup>He form factors using polarization observables.
  - Constrain the locations of the diffractive minima.
  - Provide new method to hypothesis test theory predictions.
  - Determine if polarization observables agree with unpolarized Rosenbluth results.
  - Help explain the discrepancies between theoretical predictions and experimental measurements of the <sup>3</sup>He form factors.
- History has shown that polarization measurements can reveal problems with cross section extracted form factors (Jones *et al.* 2000).

|      |          |       | OF    | Flastic | Total  |          | Final   |
|------|----------|-------|-------|---------|--------|----------|---------|
|      | $\theta$ | $Q^2$ | QL    | Data    | Data   | Duranala | Elastic |
|      | [°]      | [GeV] | Rate  | Rate    | Rate   | Prescale | Rate    |
|      |          |       | [Hz]  | [Hz]    | [Hz]   |          | [Hz]    |
| SHMS | 11       | 0.157 | 76708 | 3655    | 233779 | 52       | 70.30   |
|      | 13       | 0.22  | 31469 | 469     | 94877  | 22       | 21.31   |
|      | 15       | 0.286 | 13820 | 45.01   | 41505  | 10       | 4.50    |
|      | 17       | 0.363 | 6120  | 3.03    | 18363  | 5        | 0.61    |
|      | 19       | 0.517 | 2691  | 0.52    | 8073   | 2        | 0.26    |
| HMS  | 21       | 0.612 | 1200  | 0.40    | 3599   | 1        | 0.40    |

Spectrometer Central Kinematics