1/21

New proposal JLab P12-19-002

HIGH PRECISION MEASUREMENT OF Λ HYPERHYDROGENS

T. Gogami (Kyoto University),

S.N. Nakamura, F. Garibaldi, P. Markowitz, J. Reinhold, L. Tang, G.M. Urciuoli for the JLab Hypernuclear Collaboration and for the JLab Hall A Collaboration July 29, 2019

WHAT WE LEARN FROM HYPERNUCLEI

- 1 Investigating the YN interaction
- 2 Probing deep inside of nuclei
- **③** Unique features with hyperons (impurity effect)

AN CHARGE SYMMETRY BREAKING

S = 0

S = -1

3/21

JLab measurements for the CSB study

PHYSICAL REVIEW C covering nuclear physics

HES-HKS

Editors' Suggestion

PHYSICAL REVIEW C **– HES-HKS** covering nuclear physics High resolution spectroscopic study of $^{10}_{\Lambda}$ Be Rapid Communication T. Gogami et al. (HKS(JLab E05-115) Collaboration) Phys. Rev. C 93, 034314 - Published 10 March 2016 Spectroscopy of the neutron-rich hypernucleus ${}^7_{\Lambda}$ He from electron scattering PHYSICAL REVIEW C HIRS-HIRS covering nuclear physics T. Gogami et al. (HKS (JLab E05-115) Collaboration) Phys. Rev. C 94, 021302(R) - Published 12 August 2016 PHYSICAL REVIEW C Spectroscopy of ${}^9_{\Lambda}\text{Li}$ by electroproduction **HES-HKS** covering nuclear physics ENGE-HIKS G. M. Urciuoli et al. (Jefferson Lab Hall A Collaboration) Editors' Suggestion Phys. Rev. C 91, 034308 - Published 4 March 2015 PHYSICAL REVIEW LETTERS ENGE-HKS Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ${}^{12}_{4}$ B hypernuclei Observation of the ${}^{7}_{\Lambda}$ He Hypernucleus by the $(e, e'K^+)$ Reaction L. Tang et al. (HKS (JLab E05-115 and E01-011) Collaborations) Phys. Rev. C 90, 034320 - Published 25 September 2014 S. N. Nakamura et al. (HKS (JLab E01-011) Collaboration) Phys. Rev. Lett. 110, 012502 - Published 2 January 2013 4/21

4/21

ADVANTAGE OF ELECTRON BEAM SPECTROSCOPY

Experimental technique with (e,e'K⁺): T. Gogami et al., NIMA 900, 69—83 (2018)

e beam vs. hadron beam

Better control of e beams
 Better resolution

 2. Proton target
 → Absolute calibration (Better accuracy)

BETTER PRECISION AND ACCURACY

RPC 93 (2016) 034314

 10 B(e, e'K⁺) ¹⁰ Be @JLab

6/21

THE PROPOSED MEASUREMENT (P12-19-002)

High precision + accuracy measurement at JLab Hall A

- ${}^{3}\text{He}(e, e'K^{+})_{A}^{3}\text{H} \rightarrow \text{Hypertriton puzzle (10 days)}$
- ${}^{4}\text{He}(e, e'K^{+})^{4}_{\Lambda}\text{H} \rightarrow \Lambda \text{N CSB}(1 \text{ day})$

The same experimental setup as E12-15-008 $\binom{40,48}{\Lambda}$ K) Saving a lot of time for spectrometer installation (~0.5 years)

CHARGE SYMMETRY BREAKING (CSB)

Before 2015

8/21

*1) J.H.E.Mattauch *et al.*, *Nucl. Pys.* **67**, 1 (1965).
*2) R.A.Brandenburg, S.A.Coon *et al.*, *NPA***294**, 305 (1978).

Five times larger effect!!

CHARGE SYMMETRY BREAKING (CSB)

*1) T. O. Yamamoto et al. (J-PARC E13 Collaboration), Phys. Rev. Lett. 115, 222501 (2015)

^{*2)} A. Esser *et al.* (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015).

1+

 θ^+

□ Five times larger effect **D** Spin dependent

CHARGE SYMMETRY BREAKING (CSB)

*1) T. O. Yamamoto *et al.*(J-PARC E13 Collaboration),
Phys. Rev. Lett. 115, 222501 (2015)

^{*2)} A. Esser *et al.* (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015).

Λ HYPERTRITON

Basic observable for the AN interaction study

- No two body bound system with Λ
- The lightest hypernucleus
- Scarce data of scattering experiment

Puzzle

• The small binding energy vs. the short lifetime

11/21

$$\sqrt{\langle r^2 \rangle} \cong \frac{\hbar}{\sqrt{4\mu B_{\Lambda}}}$$

 $\cong 10 \text{ fm} \quad (\text{where, } B_{\Lambda} = 130 \text{ keV})$

 Λ is almost free from the interaction with nucleons → Hypertriton lifetime is expected to be similar to Λ

LIFETIME PUZZLE OF A HYPERTRITON

Lifetime of ∧ hypertriton: A. Gal and H. Garcilazo, Phys. Lett. B 791, 48—53 (2019).

12/21

 \rightarrow Why is the lifetime much shorter than Λ ?

- Is the B_{Λ} measurement wrong?
- π⁺ final state interaction with nucleus

$\Lambda HYPERTRITON {}^{3}_{\Lambda}H$

Spatial extent of Λ hypertriton: A. Cobis et al., Phys. G: Nucl. Part. Phys. 23, 401—421 (1997).

 B_{Λ} scattered depending on decay channels \rightarrow Precise measurement of B_{Λ} are awaited

Λ HYPERTRITON $^{3}_{\Lambda}$ H

Spatial extent of Λ hypertriton: A. Cobis et al., Phys. G: Nucl. Part. Phys. 23, 401—421 (1997).

 B_{Λ} scattered depending on decay channels \rightarrow Precise measurement of B_{Λ} are awaited

EFFORTS TO SOLVE THE Λ HYPERTRITON PUZZLE

14/2

Lifetime measurement

- J-PARC (Two proposals were submitted recently)
- ELPH (the experiment is being prepared)
- Heavy ion (higher statistics will be available in the future)

Binding energy measurement

- Heavy ion beam experiments (g.s.)
- MAMI (g.s.)
- THIS PROPOSAL (g.s. and/or 3/2⁺ states)

Theory

• π^+ final state interaction + realistic interaction model

M

⁴Λ

PREVIOUS EXPERIMENT

 $^{3}_{\Lambda}$ H

F. Dohrmann et al., *Phys. Rev. Lett.* **93**, 242501 (2004).

(e,e'K⁺) experiment at Hall C

EXPERIMENTAL SETUP

Beam	$\Delta p/p$	$<1\times10^{-4}$ FWHM		
	E_e	$4.5~{\rm GeV}$		
	D(PCSM) + QQDQ			
	$\Delta p/p$	$\simeq 2\times 10^{-4}~{\rm FWHM}$		
PCSM + HRS	$p_{e'}$	$3.0~{\rm GeV}/c\pm4.5\%$		
(e')	$\theta_{ee'}$	$7.0\pm1.5~{\rm deg}$		
	Solid angle $\Omega_{e'}$	$5 \mathrm{msr}$		
	D(PCSM) + QQD			
	$\Delta p/p$	$\simeq 2\times 10^{-4}~{\rm FWHM}$		
	p_K	$1.2~{\rm GeV}/c\pm10\%$		
PCSM + HKS	$ heta_{eK}$	$14.0\pm4.5~\mathrm{deg}$		
(K^{+})	Solid angle Ω_K	$3 \mathrm{msr}$		
	Optical length	$12 \mathrm{m}$		
	K^+ survival ratio	26%		

The experimental setup will be shared with E12-15-008
 Saving installation time

TARGET

Assumed spec of cryogenic targets: J. Alcorn et al., NIMA 522 (2004) 294—346

Solid targets and cryogenic targets can be on the same ladder

EXPECTED SPECTRA

- Cross section of signals: simulated based on E91-016 results
- \succ Distribution of quasi free Λ : E91-016
- Accidental background: E05-115
- Resolution: MC simulation assuming spectrometers' specifications

ENERGY CALIBRATION

NIMA 900 (2018) 69-83

19/21

Λ and Σ⁰ from LH2 target will be used for the absolute energy calibration → Systematic error < 100 keV

REQUESTED BEAMTIME

Mode	Hypernucleus	Target	Beam current	Beam time	Yield
		$({\rm mg/cm^2})$	(μA)	(day)	
Physics	$^3_{\Lambda}{ m H}$	3 He (168)	50	10	$840 \ (1/2^+, \ 3/2^+)$
	$^4_{\Lambda}{ m H}$	${}^{4}\text{He}$ (312)	50	1	$470 (1^+)$
		Subtotal	11	-	
Calibration	Λ	LH_2 (174)	20	0.5	Λ: 3000
	Σ^0				$\Sigma^{0}: 1000$
	-	Multi foil	20	0.1	-
	-	Multi foil + Sieve slit	20	0.2	-
	-	Empty cell	20	0.2	-
Subtotal			1	-	
Total			12	-	

Commissioning time can be shared with E12-15-008 (~0.5 year)

SUMMARY (P12-19-002)

Precise B_{Λ} measurements that are unique at JLab

- ${}^{3}\text{He}(e, e'K^{+}){}^{3}_{4}\text{H}^{(1/2+, 3/2+)} \rightarrow \text{Hypertriton puzzle (10 days)}$
- ${}^{4}\text{He}(e, e'K^{+}){}^{4}_{\Lambda}\text{H}^{(1+)}$ \rightarrow **AN CSB** (1 day)

We request additional 12 days to E12-15-008

Installation time (~ 0.5 year) can be shared

HYPERON PUZZLE IN NEUTRON STARS

Neutron star (NS): \checkmark Very dense nuclear matter $\checkmark \leq 2M_{\odot}$

Artist's impression of the PSR J0348+0432 system. The compact pulsar (with beams of radio emission) produces a strong distortion of spacetime (illustrated by the green mesh). Conversely, spacetime around its white dwarf companion (in light blue) is substantially less curved. According to relativistic theories of gravity, the binary system is subject to energy loss by gravitational waves.

J. Antoniadis *et al.*, *Science* 340, 1233232 (2013).

H. Togashi, E. Hiyama, Y. Yamamoto, M. Takano, Phys. Rev. C 93, 035808 (2016).

Need improvement our understanding of the ΛN and ΛNN interaction

INNOVATIVE RESULTS TO SEE SHELL STRUCTURE DEEP INSIDE OF NUCLEUS

 $^{89}_{\Lambda} Y = {}^{88} Y + \Lambda$ $V^{0}_{\Lambda} = 30 \text{ MeV}$

 Λ binding energy $B_{\Lambda}({}^{A}Z) = M({}^{A-1}Z) + M(\Lambda) - M({}^{A}Z)$

GLUE-LIKE ROLE OF Λ

Shrinkage of a nucleus $\binom{7}{A}$ Li) : K. Tanida et al., PRL 86, 1982 (2001).

Stabilizing an unstable state $(^{7}_{\Lambda}\text{He})$: T. Gogami et al., PRC 94, 02132(R) (2016).

ラムダの糊効果

⁷<u>ALi の収縮:</u> K. Tanida et al., PRL 86, 1982 (2001).

 $^{5}_{\Lambda}$ He-d rms radius is shorter than α -d by 19%

EXPERIMENTAL DIFFICULTY TO OVERCOME

O. Hashimoto and H. Tamura, Prog. Par. Nucl. Phys. 57, 564 (2006)

- Small Cross section
- Small VP flux ($\Gamma \sim 10^{-5}$)
- EM backgrounds (Moller, Bremsstrahlung)
- High precision spectroscopy

 $\rightarrow \Delta p/p \sim 10^{-4}$ for both e' and K⁺

Unique technique (It can be done only at JLab)

THE CSB IN P-SHELL A HYPERNUCLEI

<u>Phenomenological CSB:</u>E. Hiyama *et al.*, *Phys. Rev. C* 80, 054321 (2009).

<u>ΛΝ-ΣΝ coupling:</u> A. Gal, Phys. Lett. B 744, 352 (2015).

Phenomenological AN CSB interaction

$$\begin{split} V_{\Lambda N}^{\text{CSB}}(r) &= -\frac{\tau_z}{2} \Big[\frac{1+P_r}{2} \Big(v_0^{\text{even},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{N} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{even},\text{CSB}} \Big) e^{-\beta_{\text{even}}r^2} \\ &+ \frac{1-P_r}{2} \Big(v_0^{\text{odd},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{N} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{odd},\text{CSB}} \Big) e^{-\beta_{\text{odd}}r^2} \Big] \end{split}$$

Explicit inclusion of the ΛN - ΣN coupling

✓ Little effect on p-shell Λ hypernuclear system ✓ Large CSB in the A = 12 system ($^{12}_{\Lambda}B$ and $^{12}_{\Lambda}C$) ??

Charge symmetry breaking (CSB) in the p-Shell hypernuclei

³He

 $^{3}\mathrm{H}$

Kyoto

May 23, 2019

$[p^{-1}p^{\Lambda}_{\perp}]$ and $[p^{-1}p^{\Lambda}_{\prime\prime}]$ states of ${}^{9}_{\Lambda}\text{Be}$ (1)

In ${}^{9}_{\Lambda}$ Be, it is well known that the p_{Λ} -state splits into two orbital states expressed by p_{\perp} and p_{\parallel} , which is due to the strong coupling with nuclear core deformation having the α - α structure. T. Motoba *et al.*, PTPS81, 42 (1985)

The p_{\parallel} state tends to the configuration with an SU(3) classification $[f](\lambda\mu) = [54](50)$ called supersymmetric. R. H. Dalitz, A. Gal, PRL36, 362 (1976); AP131, 314 (1981) **Kyoto**

May 23, 2019

Results : Cross sections of the ${}^{10}B$ (γ , K^+) ${}^{10}Be$ reaction (2)

A. Umeya (NIT)

<u>ハイパートライトンの空間的広がり:</u> A. Cobis et al., Phys. G: Nucl. Part. Phys. 23, 401—421 (1997).

 $\sqrt{\langle r^2 \rangle} \cong \frac{\hbar}{\sqrt{4\mu B_{\Lambda}}}$

Root mean square radius ≈ 10 fm (重陽子の5倍!)

THE P-SHELL HYPERNUCLEAR CSB

Phenomenological potential of the ΛN CSB interaction

E. Hiyama et al., Phys. Rev. C 80, 054321 (2009).

$$\begin{split} V_{\Lambda N}^{\text{CSB}}(r) &= -\frac{\tau_z}{2} \Big[\frac{1+P_r}{2} \Big(v_0^{\text{even},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{\mathbf{N}} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{even},\text{CSB}} \Big) e^{-\beta_{\text{even}}r^2} \\ &+ \frac{1-P_r}{2} \Big(v_0^{\text{odd},\text{CSB}} + \sigma_{\Lambda} \cdot \sigma_{\mathbf{N}} v_{\sigma_{\Lambda} \cdot \sigma_{N}}^{\text{odd},\text{CSB}} \Big) e^{-\beta_{\text{odd}}r^2} \Big] \end{split}$$

A. Gal, Phys. Lett. B 744, 352 (2015)

Isomultiplet	$\Delta B_{\Lambda}^{\exp}$ (MeV)	Prediction (MeV)
$\frac{4}{\Lambda}\text{He} - \frac{4}{\Lambda}\text{H}(0^{+})$	270 ± 60	+226
$^{4}_{\Lambda}\text{He} - ^{4}_{\Lambda}\text{H}(1^{+})$	30 ± 50	+39
$\frac{7}{\Lambda}$ Li* - $\frac{7}{\Lambda}$ He	-420 ± 250	-
$^{10}_{\Lambda}\text{B} - ^{10}_{\Lambda}\text{Be}$	-220 ± 250	-136
$^{12}_{\Lambda}\text{C} - ^{12}_{\Lambda}\text{B}$	-790 ± 190 -250 ± 190	

¹²AB: L Tang et al., PRC 90, 0343320 (2014)

 $\begin{bmatrix} 7 \\ A \\ CSB \\ -5.2 \\ -5.3 \\ -5.4 \\ -5.5 \end{bmatrix} \xrightarrow{W/CSB} -5.26 \pm 0.03 \xrightarrow{I} -5.16 \pm 0.08$

 $^{7}_{\Lambda}$ He: S.N. Nakamura et al., PRL 110, 012502 (2013).

 $B_{\Lambda}({}^{12}_{\Lambda}C)$ correction : TG et al., PRC 93, 034314 (2016).

ラムダ-核子間の 荷電対称性の破れ

<u>AN CSB についての最近の理解:</u> A. Gal and D. Gazda, *J. Phys.: Conf. Ser.* **966** 012006 (2018).

 ✓ 核子間は ほぼ 荷電対称 (CS)
 ✓ ラムダ-核子間は荷電対称性 が破れている... (CSB)

A. Gal et al., J. Phys.: Conf. Ser. 966 012006 (2018).

FIG. 9. A schematic of a target cell for a gaseous helium (^{3,4}He) and a liquid hydrogen (LH₂). A diameter of the target cell which defines the target length in the beam direction (z-direction) is 50 mm. If events in $|z_{\text{react}}| \leq 12$ mm are used for analyses, about 2σ events ($\Delta z_{\text{react}} \simeq 15$ -mm FWHM [39]) coming from the target cell are rejected. The 24-mm length in z corresponds to 174, 312 and 168 mg/cm² assuming the densities are 72, 130 and 70 mg/cm³, respectively [39].

KAON IDENTIFICATION IN HKS

<u>KID in HKS:</u> T. Gogami et al., NIMA **729 (2013)** 816–824.

$^{7}_{\Lambda}$ HE MEASUREMENTS AT JLAB

S. N. Nakamura *et al.* (HKS(JLab **E01-011** Collaboration)), *Phys. Rev. Lett.* **110**, 012502 (2013).

GLUE-LIKE BEHAVIOR OF Λ IN A NUCLEUS

