Large Acceptance Proton Form Factor Ratio Measurements up to 14.5 GeV<sup>2</sup> using Recoil Polarization Method

Update on E12-07-109

E.Cisbani, M.Jones, N.Liyanage, L.Pentchev, A.Puckett, <u>B.Wojtsekhowski</u>

Large Acceptance Proton Form Factor Ratio Measurements up to 12 GeV<sup>2</sup> using Recoil Polarization Method

Update on E12-07-109

E.Cisbani, M.Jones, N.Liyanage, L.Pentchev, A.Puckett, <u>B.Wojtsekhowski</u>

GEp/SBS B.Wojtsekhowski

#### Electron-nucleon elastic scattering

Nucleon current, one-photon approximation,  $\alpha_{em} = 1/137$ ,

$${\cal J}^{\mu}_{hadron}\,=\,iear{N}(p_f)\;[\gamma^{
u}F_1(Q^2)+\;rac{i\sigma^{\mu
u}q_{
u}}{2\,M}F_2(Q^2)]N(p_i)$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})} [(F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2(\frac{\theta}{2})]$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \sigma_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\frac{\theta}{2})\right]$$



#### The nucleon electromagnetic form factors



#### The proton GEp form factor



GEp/SBS B.Wojtsekhowski

#### Challenges in this experiment

Form factor  $\propto Q^{-4}$ Cross section  $\propto E^2/Q^4 \times Q^{-8}$ Figure-of-Merit  $\epsilon A_Y^2 \times \sigma \times \Omega$  $\propto E^2/Q^{16}$ 

Need large statistics, max luminosity and solid angle

Max luminosity -> large background Large solid angle -> small bend -> huge background

A solution is a modern tracking detector based on Gas Electron Multiplier (Fabio Sauli, 1997)

GEp/SBS B.Wojtsekhowski

#### Method: Focal Plane Polarimeter



GEp/SBS B.Wojtsekhowski

#### Experiment: Layout and Parameters

 $H(\vec{e}, e'\vec{p})$ 



Slide 5

Beam: 75  $\mu$ A, 85% polarization Target: 30 cm liquid H<sub>2</sub> Electron arm at 29°, covers Q<sup>2</sup> range from 12.5 to 16 GeV<sup>2</sup> Proton arm at angle 17°,  $\Omega = 35$  msr , Spin precession angle is ~ 90° (it is optimum)

Event rate is 10 times higher than with standard spectrometer

45 From 56 days of production time resulting accuracy is

 $\Delta(\mu_p G^p_{\scriptscriptstyle {\rm \scriptscriptstyle F}}/G^p_{\scriptscriptstyle {\rm \scriptscriptstyle M}}) < 0.10$ 

GEP-15 Bogdan Wojtsekhowski, JLab

GEp/SBS B.Wojtsekhowski

PAC32 August 7, 2007

# GEp/SBS Q<sup>2</sup> acceptance, projected accuracy, and beam time request



| $E_{beam},$ | $Q^2$ range, | $\langle Q^2 \rangle$ | $\theta_{_{ECAL}}$ | $\langle E'_e \rangle$ , | $\theta_{_{SBS}}$ | $\langle P_p \rangle$ | $\langle \sin \chi \rangle$ | Event rate | Days | $\Delta \left( \mu G_E / G_M \right)$ |
|-------------|--------------|-----------------------|--------------------|--------------------------|-------------------|-----------------------|-----------------------------|------------|------|---------------------------------------|
| GeV         | $GeV^2$      | ${ m GeV}^2$          | degrees            | ${\rm GeV}$              | degrees           | GeV                   | degrees                     | Hz         |      |                                       |
| 6.6         | 4.5-7.0      | 5.5                   | 29.0               | 3.66                     | 25.7              | 3.77                  | 0.72                        | 291        | 2    | 0.029                                 |
| 8.8         | 6.5-10.0     | 7.8                   | 26.7               | 4.64                     | 22.1              | 5.01                  | 0.84                        | 72         | 11   | 0.038                                 |
| 11.0        | 10.0-14.5    | 11.7                  | 29.0               | 4.79                     | 16.9              | 7.08                  | 0.99                        | 13         | 32   | 0.081                                 |

#### Total 45 days

#### GEp/SBS B.Wojtsekhowski

#### Proton arm in the model



#### Proton arm calorimeter in the model



energy resolution  $60\%/\sqrt{E[GeV]}$ time resolution ~ 0.5 ns

GEp/SBS B.Wojtsekhowski

#### Electron arm calorimeter in the model



GEp/SBS B.Wojtsekhowski

#### SBS trackers/polarimeters: Front tracker: INFN/UVa



Spacer sector Hoding Bar

Hit spatial resolution ~ 70 µm Stand large background ( $\gamma \sim 250 MHz/cm^2$ ,  $e + \pi \sim 160 kHz/cm^2$ ) Transverse area at least 40x120 cm<sup>2</sup> Event rate at the level of 20 kevents/s Reuse in different configurations (SBS/GEp, BigBite/GEn ...)

#### SBS trackers/polarimeters: Rear tracker: UVa/INFN



- Protection resistors are outside the chamber: reliable, easy access.
- □ Large alignment pins, away from the active area
- Wide frames on the two sides not in active area: better mechanical rigidity and more room for gas inlets, HV traces etc.
- Electronics arranged to minimize the material within active area.



#### The proton GEp/GMp form factor ratio



15

#### The nucleon structure in terms of GPDs



Scientific case

Reduction formulas at  $\boldsymbol{\xi} = \boldsymbol{t} = \boldsymbol{0}$ for DIS and  $\boldsymbol{\xi} = \boldsymbol{0}$  for FFs  $H^{q}(x, \xi = 0, t = 0) = q(x)$  $\tilde{H}^q(x,\xi=0,t=0) = \Delta q(x)$  $\int_{-1}^{+1} dx \, H^q(x,0,Q^2) \, = \, F_1^q(Q^2)$  $\int_{-1}^{+1} dx \, E^q(x,0,Q^2) \, = \, F_2^q(Q^2)$ 

#### The nucleon structure in terms of GPDs

$$\begin{split} F_1(t) &= \sum_q e_q \int dx H_q(x,t) & \text{Muller, Ji, Radyushkin} \\ q(x, \mathbf{b}) &= \int \frac{d^2 q}{(2\pi)^2} e^{i \mathbf{q} \cdot \mathbf{b}} H_q(x,t=-\mathbf{q}^2) & \text{M.Burkardt} \\ P.Kroll: u/d \text{ segregation} \\ \rho(b) &\equiv \sum_q e_q \int dx \; q(x,\mathbf{b}) &= \int d^2 q F_1(\mathbf{q}^2) e^{i \mathbf{q} \cdot \mathbf{b}} \\ \rho(b) &= \int_0^\infty \frac{Q \cdot dQ}{2\pi} J_0(Qb) \frac{G_E(Q^2) + \tau G_M(Q^2)}{1+\tau} & \text{G.Miller} \\ \text{center of momentum } R_\perp &= \sum_i x_i \cdot r_\perp, i \\ b \text{ is defined relative to } R_\perp & \text{Transverse center of the} \\ quarks longitudinal \\ momentum fractions \end{split}$$

PAC47 July 30, 2019

Scientific case

#### Mapping transverse distribution(s)

two-photon contributions at high Q<sup>2</sup>

$$d\sigma = d\sigma_{NS} \{ \epsilon (\tilde{G}_E + \frac{s-u}{4M^2} \tilde{F}_3)^2 + \tau (\tilde{G}_M + \epsilon \frac{s-u}{4M^2} \tilde{F}_3)^2 \}$$





## $Q^2$ dependence of F2/F1



pQCD prediction for large  $Q^2$ :  $S \rightarrow Q^2 F_2/F_1$ 

#### pQCD updated prediction: $S \rightarrow \left[Q^2/\ln^2(Q^2/\Lambda^2)\right] F_2/F_1$

Flavor separated contributions: The log scaling for the proton Form Factor ratio at few GeV<sup>2</sup> is likely "accidental".

The lines for individual flavor are straight!

#### Summary

• After 12 years of development the GEp/SBS experiment is on track to be ready for installation in 2022.

 Nucleon elastic form factors are important constraints on QCD-based models in the high-t region.

 Flavor composition of the nucleon form factors will be used for testing the DSE and lattice QCD predictions.

# Backup slides

## MC simulation



### Electron arm: Calorimeter's temperature, 3x3 group



#### Proton arm: Calorimeter counter structure

- Each module is 15 cm x 15 cm x ~1 m
  - Plus light guide and PMT at end
- 40 layers scintillators + iron per module
  - Staggered to increase light output





#### Proton arm: Calorimeter commissioning



HCAL has 288 counters (in 12 x 24 array)

GEp/SBS B.Wojtsekhowski

#### Proton arm: GEM chambers commissioning

