Probing the Spin Structure of the Neutron:

E12-06-121: d₂ and g₂ for the Neutron

Spokespeople: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky

> Brad Sawatzky Jefferson Lab

E12-06-121: d_2^n , g_2^n

- <u>Hall C: SHMS + HMS</u>
- Two beam energies:
 - \rightarrow 11 GeV/c (production)
 - \rightarrow 2.2 GeV/c (calib.)
- Beam Current
 - \rightarrow 30 uA (production)
 - \rightarrow 60 uA (max, calib.)
- Target: 40 cm Polarized 3He
- Each arm measures an <u>absolute</u> <u>polarized cross section</u> independent of the other arm

$$(g_1, g_2)$$

 $\rightarrow d_2(Q^2) = \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$

- SHMS collects data at
 - $\rightarrow \Theta = 11^{\circ}$, 13.3°, 15.5° and 18.0° for 125 hrs each
 - \rightarrow data from each setting divided into 4 bins
- HMS collects data at
 - $\rightarrow \Theta = 13.5^{\circ}$, 16.4°, 20.0° and 25.0° for 125 hrs each

SHN	AS Produc	tion	HMS Production				
Setting	P ₀	Angle	Setting	P ₀	Angle		
А	7.5	11.0°	A'	4.3	13.5°		
В	7.0	13.3°	В'	5.1	16.4°		
С	6.3	15.5°	C'	4.0	20.0°		
D	5.6	18.0°	D'	2.5	25.0°		

Nominal Beam Time Allocation

- PAC 36 approved E12-06-121 for requested 700 PAC hours (29 PAC days)
 - $\rightarrow~$ 5-pass beam (nominal 11.0 GeV/c) for ~ 676 PAC hours
 - → 1-pass beam (nominal 2.2 GeV/c) for ~ 20 PAC hours + pass change → 5-pass
 - » Requested 3 calendar days at 1 pass during d2n period to accommodate our 1-pass checks
 + a nominal PAC day for the proposed Pol 3He Elastic measurement
 - * Some of the 1-pass data below will already be in the can from the A1n 1-pass.

•	1-pass Running (Calibrations)	[~20 PAC hours]
	→ Optics	[2 PAC hours*]
	\rightarrow H(e,e'p) elastics, C, ³ He elastic, QE calibrations	[15 PAC hours*]
	\rightarrow BCM, BPM calibrations	[2 PAC hours*]
•	Pass change $1 \rightarrow 5$	[~4 PAC hours*]
•	5-pass Running (Production)	[~676 PAC hours]
	→ Production	[~600 PAC hours]
	\rightarrow Optics , BCM, Misc.	[18 PAC hours]
	\rightarrow Target polarization measurements (4% of production	on) [24 PAC hours]
	→ Reference cell runs (N_2 , ³ He, vacuum)	[8 PAC hours]
	→ Positive polarity	[16 PAC hours]
	\rightarrow Moller measurements (x4)	[12 PAC hours]

Thomas Jefferson National Accelerator Facility A1n / d2n Collaboration Meeting – July 24, 2019

5-Pass Running

• 5-pass beam allocation

- \rightarrow 54 calendar days
- \rightarrow 162 shifts
- For each kinematic "pair" (X, X')
 - \rightarrow 1+1 hr Nitrogen
 - \rightarrow 1+1 hr Empty cell
 - \rightarrow 8 hrs Optics (C-foil + Sieve)
 - \rightarrow 8 hrs Pressure curves
 - » 4 hrs He-3
 - » 4 hrs N2
 - \rightarrow 8 hrs Positive polarity runs
 - » 4 hrs optics
 - » 4 hrs production
 - → Target NMR sweep
 - » 1–2 / shift (?)
 - \rightarrow Production runs (125 PAC hrs)
 - » 31 shifts

Jefferson Lab

SHN	AS Produc	ction	HMS Production				
Setting	\mathbf{P}_{0}	Angle	Setting	P ₀	Angle		
А	7.5	11.0°	A'	4.3	13 . 5°		
В	7.0	13.3°	В'	5.1	16.4°		
С	6.3	15.5°	C'	4.0	20.0°		
D	5.6	18.0°	D'	2.5	25.0°		

- Summing up time in left list:
 - \rightarrow 35 shifts: production + optics + pos. pol. running
- Moller runs: roughly 1/week
 - \rightarrow 2 shift / setting
- Allow ~10% overhead = ~3–4 shifts
- Total: ~40 shifts / setting
 - → 160 shifts out of a nominal 162 calendar shifts at 5-pass

5-Pass Running

• 5 Pass running

- \rightarrow 54 days = 162 shifts total
- → 160 shifts of "Kinematically tied" data taking
 - » incl. Moller meas.
 - » incl. 3–4 shifts of overhead
- → Leaves 2 shifts for remaining instrumentation/calibration runs below
- Instrumentation / Calibration runs
 - » BPM calibration (2 hour)
 - » BCM calibration (2 hour)
 - » Beam energy (2 hour)
 - \rightarrow ie. Roughly 1 shift of time to get a "set"
 - → Plan to take 2 sets during 5-pass running (2 shifts)

SHN	AS Produc	tion	HMS Production				
Setting	P ₀	Angle	Setting	P ₀	Angle		
А	7.5	11.0°	A'	4.3	13.5°		
В	7.0	13.3°	В'	5.1	16.4°		
С	6.3	15.5°	C'	4.0	20.0°		
D	5.6	18.0°	D'	2.5	25.0°		

- NOT explicitly included:
 - \rightarrow Target spin flips
 - » Once every 3 days?
 - » 1/week can probably be opportunistic (beam studies, RF recovery, etc.)
 - » 2nd will be on us (part of overhead)
 - $\rightarrow \lambda/2$ plate flips (negl. overhead)
 - → Do we have sufficient coverage for Rad. Corrections, or can we make our lives easier with some additional kin points?

1-pass Running

• 1-pass beam allocation

 \rightarrow 3 calendar days (*TBD)

• Nominal todo list

- \rightarrow 8 hr Moller run
- \rightarrow 4 hr Optics at p0 = 2.2 GeV/c
 - » C foils, Sieve
 - » Done already? Crosscheck, or augment data from Fall as needed?
- \rightarrow 2 hrs Hydrogen elastics
- \rightarrow 3 hours delta QE meas.
 - » $\lambda/2$ flip in middle
- → 3He elastic data
 - » See Table on Right
 - Details in next talk
 - » Pos. pol running?

Spectrometer	$E_{\rm beam}$ [GeV]	Label	θ [°]	Q^2 [fm ⁻²]	Estimated Cross Section	Rate [Events/hr]	Time PAC
SHMS	2.216	k1	11	4.57	[mb/sr] 4.39×10 ⁻⁴	2,605,270	hrs 1
		k2	13	6.34	5.14×10^{-5}	$305,\!609$	1
		k3	15	8.38	$4.37{\times}10^{-6}$	$25,\!946$	1
		k4	17	10.66	2.22×10^{-7}	$1,\!319$	10
		k5	19	13.18	$5.97{\times}10^{-8}$	355	11
HMS	2.216	k6	21	15.93	3.99×10^{-8}	427	24

- Optional / Float between 1-pass and 5-pass as desired
 - → BCM, BPM measurements
- Details still TBD to make a run plan:
 - \rightarrow Split run time in table before/after target pol. flip?
 - » Flip target polarization takes ~1 hr
 - → Integrate $\lambda/2$ plate flips
 - → ...

Backup Slides

Thomas Jefferson National Accelerator Facility A1n / d2n Collaboration Meeting – July 24, 2019

Projected results for E12-06-121

Thomas Jefferson National Accelerator Facility A1n / d2n Collaboration Meeting – July 24, 2019

Standard Hall C Detector Packages

- SHMS ('default' detector package)
 - → Hodoscopes, Wire chambers, NGC, Calorimeter
 - → HGC tank remains installed: may pump to vacuum, or fill with Argon for auxiliary PID
- HMS ('default' detector package)
 - → Hodoscopes, Wire chambers, Calorimeter
 - \rightarrow HGC fill with Argon, or C4F10 (sub-atmosphere)
- DAQs
 - → Standard DAQ and triggers
- See also: <u>Spectrometer and Detector Systems talk</u>

Nominal Beam Requirements

- Beam Characteristics
 - » See 'Performance Requirements' slide in <u>A1n overview and running conditions</u> for general shared requirements.
 - \rightarrow 1-pass, 5-pass requested (see upcoming slide for more details)
 - → Beam polarization: 80%
 - \rightarrow < 50 ppm charge asym (average over ~ 1–2 hr run)
 - \rightarrow 30 uA (max) on glass cell targets
 - \rightarrow 60 uA (max) on solid targets

Nominal Target Requirements

- Polarized ³He Target Requirements
 - » See 'Performance Requirements' slide in <u>A1n overview and running conditions</u> for general shared target requirements.
 - \rightarrow 55% polarization
 - \rightarrow 30 uA beam current capability
 - \rightarrow ~0.1 spin angle measurement (2 mrad)
 - » Challenging, but achievable
- Target Ladder components
 - \rightarrow Polarized ³He production cell (40cm)
 - \rightarrow Reference cell:
 - » vacuum, H₂, ³He, Nitrogen
 - \rightarrow Optics foils (7)
 - \rightarrow Single-carbon foil
 - → Carbon-hole (alignment, raster checks)

Fallback / Contingency Plans

- » ~200 hours for each pair
- Worst case:

lacksquare

- → Fall back to these params and we still have a viable measurement.
- See also:
 - → Section 5 of <u>PAC36 Update</u> (last few paragraphs)

13

Supporting Documentation

- Supporting Documentation
 - → PAC30 Proposal
 - → <u>PAC36 Update</u>
- Polarized ³He ERR Page <u>Supporting Documentation</u>
- <u>E06-014 (2009 d2n Exp.) Wiki</u>

Thomas Jefferson National Accelerator Facility A1n / d2n Collaboration Meeting – July 24, 2019

Magnetic Field Direction

Optical

Axle

Nitrogen Chamber

Encoder

Longitudinal Field: - air floating compass (left) - needle compass (above)

 $\Delta \Theta < 2 \text{ mrad} (< 0.1 \text{ degree})$

A. Kolarkar, Ph.D. Thesis, UKy, 2008 C. Dutta, Ph. D. Thesis, UKy, 2010

Adjustable

supporting screws

Cylindrical

Magnet

Walls

Ħ

Production Kinematics for HMS

Table 4: Expected rates for the three HMS settings. The uncertainties for A_{\parallel} and A_{\perp} are <i>statistical</i> only.												
	θ_0	E'_{cent}	Q ²	X	W	e ⁻ rate	π^- rate	t	t_{\perp}	ΔA_{\parallel}	ΔA_{\perp}	j
	[0]	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$	
	13.5	4.305	2.617	0.208	3.293	954	765	8	117	2.0	0.6	
	16.4	5.088	4.555	0.410	2.727	218	15	12	113	3.9	1.2	
	20.0	4.000	5.31	0.404	2.951	76	66	10	115	6.0	1.8	
	25.0	2.500	5.15	0.323	3.417	20	84	13	112	10.7	3.1]

• Rate table from PAC36

- \rightarrow 30 uA beam
- \rightarrow 55% polarization
- \rightarrow Assumed 60 cm long cell
- Current target
 - \rightarrow 40 cm long cell
- As discussed in the PAC36 update, we have been conservative on our statistical run times and are not statistics limited, even with the shorter production cell.

Production Kinematics for SHMS

Table 3: Kinematic bins and expected rates for the SHMS. The uncertainties for A_{\parallel} and A_{\perp} are *statistical* only.

SHMS	E' _{bin}	Q ²	X	W	e ⁻ rate	π^- rate	t _{ll}	t⊥	ΔA_{\parallel}	ΔA_{\perp}
Setting	[GeV]	[GeV ²]		[GeV]	[Hz]	[Hz]	[hrs]	[hrs]	$[\cdot 10^{-4}]$	$[\cdot 10^{-4}]$
$\theta_0 = 11^\circ$	7.112	2.875	0.394	2.305	1058	11	12	113	2.0	0.5
	7.709	3.116	0.504	1.988	708	3.1	12	113	2.3	0.7
$E'_{cent} = 7.5$	8.304	3.357	0.663	1.610	259	0.83	12	113	3.7	0.1
GeV	8.900	3.597	0.912	1.109	2.7	0.21	12	113	36	10
$\theta_0 = 13.3^{\circ}$	6.647	3.922	0.480	2.267	268	3.1	12	113	3.5	1.0
	7.203	4.250	0.596	1.941	139	0.8	12	113	4.8	1.5
$E'_{cent} = 7.0$	7.758	4.578	0.752	1.548	31.6	0.16	12	113	10	3.1
GeV	8.314	4.906	0.972	1.012	0.10	0.033	12	113	173	55
$\theta_0 = 15.5^{\circ}$	5.997	4.798	0.511	2.342	96	1.9	12	113	5.7	1.8
	6.496	5.197	0.614	2.037	49	0.47	12	113	7.8	2.5
$E'_{cent} = 6.3$	6.995	5.597	0.744	1.677	13.5	0.11	12	113	15	4.7
GeV	7.494	5.996	0.911	1.215	0.29	0.025	12	113	98	33
$\theta_0 = 18.0^\circ$	5.348	5.756	0.542	2.397	35	1.1	12	113	9.5	3.1
	5.790	6.235	0.637	2.106	17	0.25	12	113	13	4.4
$E'_{cent} = 5.6$	6.233	6.711	0.749	1.769	5.1	0.05	12	113	24	8.1
GeV	6.675	7.187	0.885	1.350	0.38	0.01	12	113	87	30

- Table from PAC36 update
 - \rightarrow Same considerations as noted on prior slide apply.

Systematic Error Table

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
	 Target spin direction (0.1°) 	$< 5 imes 10^{-4}$
Cross section (raw)	Beam charge asymmetry	< 50 ppm
	• PID efficiency	< 1 %
	Background Rejection efficiency	~1%
	Beam charge	< 1 %
	Beam position	< 1 %
	Acceptance cut	2-3 %
	Target density	< 2%
	 Nitrogen dilution 	< 1%
	Dead time	<1%
	Finite Acceptance cut	$<\!1\%$
Radiative corrections		\leq 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$	and $d_2(Q^2))$	$\leq 10~\%$
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (<i>assuming</i> $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

- PREx-II, CREx ERR accepted < 0.1 ppm Charge Asym requirement as achievable
- Target spin direction precision achievable (see backup slide)

18

or Facility ly 24, 2019

E12-06-121: *d*₂^{*n*}, *g*₂^{*n*}

- Directly measure the Q^2 dependence of the neutron $d_2^{n}(Q^2)$ at $Q^2 \approx 3$, 4, 5, 6 GeV² with the new polarized ³He target.
 - \rightarrow The new Hall C SHMS is ideally suited to this task!
- Doubles number of precision data points for $g_2^{n}(x, Q^2)$ in DIS region.
 - \rightarrow Q² evolution of g_2^n over (0.23 < x < 0.85)
- *d*₂ is a clean probe of quark-gluon correlations / higher twist effects
- Connected to the *color Lorentz force* acting on the struck quark (Burkardt)
 - → same underlying physics as in SIDIS k_{\perp} studies
- Investigate the present discrepancy between data and theories.

• Spokespeople: T. Averett, W. Korsch, Z.E. Meziani, B. Sawatzky

