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Motivation

• Significant discrepancies between 3He theoretical form factors (FFs)

and experimental FFs (particularly magnetic FF minima).

• All experimental data from unpolarized electron scattering results.

• Double-polarization experiments have found large disagreement

between proton FF measurements (Qattan et al. 2005).

– FFs extracted via polarization observables vs. unpolarized

Rosenbluth separations disagree.

– Disagreement is worse at high Q2.

• Double-polarization measurements have also shown divergent results

from theoretical predictions in past 3He experiments (Mihovilovič et

al. 2019; Mihovilovič et al. 2014).

• The double-polarization asymmetry (polarized electron beam and

polarized 3He target) is proportional to the product of Fch and Fm.

– Zeros of the asymmetry are the FF diffractive minima.

– Constrain minima locations.

– Hypothesis test theoretical models.
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Current State of 3He World Data

• All experimental data either from Rosenbluth separation techniques

or cross section world data fitting with a FF parametrization.(
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scattering angle of the electron.

(
dσ

dΩ

)
r

=

(
dσ
dΩ

)
exp(

dσ
dΩ

)
Mott

ε(1 + τ) =
[
εG 2

E

(
Q2
)

+ τG 2
M

(
Q2
)]

(2)

– By plotting
(
dσ
dΩ

)
r

against ε the slope of the line gives G 2
E and the

y -intercept gives τG 2
M .

• Rosenbluth separations take significant beam time and struggle near

the diffrative minima.
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Current State of 3He World Data Cont.

• Extract FFs by cross section world data fits e.g. sum of Gaussians.

– Must choose a parametrization for the FFs.

– These parametrizations generally assume sharp FF minima.

• 3He cross section at 1 GeV and 3 GeV.

(a) 3He cross section at 1 GeV. (b) 3He cross section at 3 GeV.

Figure 1: Plots of the 3He cross section at two different energies. Form

factor parametrizations from Reference (Barcus 2019).

• Can sharp FF minima fit relatively shallow cross section minima well?
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Fch

• Plot of 3He Fch with four theory curves.

– ‘Conventional’ theoretical approach, two χEFT predictions, and a

covariant spectator theorem model (Marcucci et al. 2016).

Figure 2: 3He Fch SOG fits and uncertainty bands from References (Amroun et

al. 1994; Barcus 2019) along with four theoretical predictions from Reference

(Marcucci et al. 2016). Note that Fch is plotted here and Fch = GE .
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Fm

• Plot of 3He Fm with four theory curves.

Figure 3: 3He Fm SOG fits and uncertainty bands from References (Amroun et

al. 1994; Barcus 2019) along with four theoretical predictions from Reference

(Marcucci et al. 2016). Note that Fm is plotted here and Fm = GM/µ, where µ

is the 3He magnetic moment.

• Theory predicts minimum at significantly lower Q2 than measured.
5



Double-Polarization Asymmetry



Double-Polarization Asymmetry

• The double-polarization asymmetry is given by:
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– θ∗ and φ∗ are the polar and azimuthal angles of the polarization

vector of the target.

– Target polarization direction can control the GEGM and G 2
M terms.

• The measured observable is given by (4) and relates to the true

asymmetry by (5).

Ameas =
N+ − N−

N+ + N− , (4) Ameas = PtPlAphys , (5)

– N+ (N−) is the normalized counting rate for positive (negative)

beam helicity.

– Pt and Pl are the degrees of polarization of the target and beam.
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Double-Polarization Asymmetry Cont.

• Unpolarized Rosenbluth measurements only sensitive to G 2
E and G 2

M .

• Double-polarization measurements are sensitive to the FF signs

through the GEGM cross term.

– Choose target polarization to minimize G 2
M term (cos(φ∗) ≈ 1 and

θ∗ ≈ π
2

).

– The zeros of the asymmetry correspond to the FF minima.

• Hypothesis test theoretical predictions.

– Take GE and GM from theory and calculate/plot theory asymmetries.

• New independent tool to map FFs without the issues of unpolarized

Rosenbluth measurements.
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Double-Polarization Asymmetry Cont.

Figure 4: Double-polarization asymmetry at 2.216 GeV using the SOG fits in

Reference (Barcus 2019). The points show the statistical uncertainty of the

mean of each kinematic setting.

8



Proposed Procedure



Proposed Procedure

• Requires usual Hall C equipment (HMS/SHMS) in the standard

configurations.

• HMS:

– Positioned at single angle centered on the anticipated Fm diffractive

minima for the entirety of the run.

• SHMS:

– Start at small angles and step up in Q2 passing through the Fch

minimum and approaching just below Fm’s.

– Will help constrain the location of the minima while mapping the

asymmetry.

• Uses 3He target developed for E12-06-110 and E12-06-121.

Length [cm] Max Current [µA] Target Polarization Beam Polarization

40 30 55% 85%

Table 1: Expected 3He Target Characteristics
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Proposed Procedure Cont.

• Parasitically make measurements at 2.216 GeV when experiment

E12-06-121 (Sawatzky et al. 2006) takes data on beam-target

polarization product.

Ebeam

[GeV]

θ

[◦]

Q2

[fm−2]

Estimated

Cross Section

[mb/sr]

Rate

[Events/hr]

Time

[hr]

SHMS 2.216 k1 11 4.57 4.39×10−4 2,605,270 1

k2 13 6.34 5.14×10−5 305,609 1

k3 15 8.38 4.37×10−6 25,946 1

k4 17 10.66 2.22×10−7 1,319 10

k5 19 13.18 5.97×10−8 355 11

HMS 2.216 k6 21 15.93 3.99×10−8 427 24

Table 2: Spectrometer Central Kinematics

• High rate kinematics not statistics limited → check systematics.

• Low Q2 points will determine product of beam-target polarization.
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Conclusions

• In collaboration with dn
2 we proposed to measure the

double-polarization asymmetry of 3He over a range of Q2.

– Parasitically uses time already allotted for measuring beam-target

polarization product.

• This will be the first high Q2 measurement of 3He FFs using

polarization observables.

– Constrain the locations of the FF diffractive minima.

– Provide new method to hypothesis test theory predictions.

– Determine if polarization observables agree with unpolarized

Rosenbluth results.

– Help explain the discrepancies between theoretical predictions and

experimental measurements of the 3He FFs.

• History has shown that polarization measurements can reveal

problems with cross section extracted FFs (Jones et al. 2000).
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