First High *Q*² ³He Form Factor Measurements using Polarization Observables

Scott Barcus July 24th 2019

Jefferson Lab

• Significant discrepancies between ³He theoretical form factors (FFs) and experimental FFs (particularly magnetic FF minima).

- Significant discrepancies between ³He theoretical form factors (FFs) and experimental FFs (particularly magnetic FF minima).
- All experimental data from unpolarized electron scattering results.

- Significant discrepancies between ³He theoretical form factors (FFs) and experimental FFs (particularly magnetic FF minima).
- All experimental data from unpolarized electron scattering results.
- Double-polarization experiments have found large disagreement between proton FF measurements (Qattan *et al.* 2005).
 - FFs extracted via polarization observables vs. unpolarized Rosenbluth separations disagree.
 - Disagreement is worse at high Q^2 .
- Double-polarization measurements have also shown divergent results from theoretical predictions in past ³He experiments (Mihovilovič *et al.* 2019; Mihovilovič *et al.* 2014).

- Significant discrepancies between ³He theoretical form factors (FFs) and experimental FFs (particularly magnetic FF minima).
- All experimental data from unpolarized electron scattering results.
- Double-polarization experiments have found large disagreement between proton FF measurements (Qattan *et al.* 2005).
 - FFs extracted via polarization observables vs. unpolarized Rosenbluth separations disagree.
 - Disagreement is worse at high Q^2 .
- Double-polarization measurements have also shown divergent results from theoretical predictions in past ³He experiments (Mihovilovič *et al.* 2019; Mihovilovič *et al.* 2014).
- The double-polarization asymmetry (polarized electron beam and polarized ³He target) is proportional to the product of *F_{ch}* and *F_m*.
 - Zeros of the asymmetry are the FF diffractive minima.
 - Constrain minima locations.
 - Hypothesis test theoretical models.

Current State of ³He World Data

Current State of ³He World Data

• All experimental data either from Rosenbluth separation techniques or cross section world data fitting with a FF parametrization.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{1}{1+\tau} \left[G_E^2\left(Q^2\right) + \frac{\tau}{\epsilon} G_M^2\left(Q^2\right)\right] \quad (1)$$

- With $\epsilon = (1 + 2(1 + \tau) \tan^2(\frac{\theta}{2}))^{-1}$ and $\tau = \frac{Q^2}{4M^2}$, where θ is the scattering angle of the electron.

Current State of ³He World Data

 All experimental data either from Rosenbluth separation techniques or cross section world data fitting with a FF parametrization.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm exp} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \frac{1}{1+\tau} \left[G_E^2\left(Q^2\right) + \frac{\tau}{\epsilon} G_M^2\left(Q^2\right)\right] \quad (1)$$

- With $\epsilon = (1 + 2(1 + \tau) \tan^2(\frac{\theta}{2}))^{-1}$ and $\tau = \frac{Q^2}{4M^2}$, where θ is the scattering angle of the electron.

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm r} = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{\rm exp}}{\left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott}} \epsilon(1+\tau) = \left[\epsilon G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)\right]$$
(2)

- By plotting $\left(\frac{d\sigma}{d\Omega}\right)_r$ against ϵ the slope of the line gives G_E^2 and the *y*-intercept gives τG_M^2 .
- Rosenbluth separations take significant beam time and struggle near the diffrative minima.

Current State of ³He World Data Cont.

- Extract FFs by cross section world data fits e.g. sum of Gaussians.
 - Must choose a parametrization for the FFs.
 - These parametrizations generally assume sharp FF minima.

Current State of ³He World Data Cont.

- Extract FFs by cross section world data fits e.g. sum of Gaussians.
 - Must choose a parametrization for the FFs.
 - These parametrizations generally assume sharp FF minima.
- $\bullet~^3\text{He}$ cross section at 1 GeV and 3 GeV.

(a) ³He cross section at 1 GeV. (

(b) ³He cross section at 3 GeV.

Figure 1: Plots of the ³He cross section at two different energies. Form factor parametrizations from Reference (Barcus 2019).

• Can sharp FF minima fit relatively shallow cross section minima well?

- Plot of ³He F_{ch} with four theory curves.
- 'Conventional' theoretical approach, two χ EFT predictions, and a covariant spectator theorem model (Marcucci *et al.* 2016).

Figure 2: ³He F_{ch} SOG fits and uncertainty bands from References (Amroun *et al.* 1994; Barcus 2019) along with four theoretical predictions from Reference (Marcucci *et al.* 2016). Note that F_{ch} is plotted here and $F_{ch} = G_E$.

• Plot of ³He F_m with four theory curves.

Figure 3: ³He F_m SOG fits and uncertainty bands from References (Amroun *et al.* 1994; Barcus 2019) along with four theoretical predictions from Reference (Marcucci *et al.* 2016). Note that F_m is plotted here and $F_m = G_M/\mu$, where μ is the ³He magnetic moment.

• Theory predicts minimum at significantly lower Q^2 than measured.

Double-Polarization Asymmetry

Double-Polarization Asymmetry

• The double-polarization asymmetry is given by:

$$A_{phys} = \frac{-2\sqrt{\tau(1+\tau)}\tan\left(\frac{\theta}{2}\right)}{G_E^2 + \frac{\tau}{\epsilon}G_M^2} \left[\sin\left(\theta^*\right)\cos\left(\phi^*\right)G_EG_M + \sqrt{\tau\left[1+(1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right]}\cos\left(\theta^*\right)G_M^2\right]}$$
(3)

- θ^* and ϕ^* are the polar and azimuthal angles of the polarization vector of the target.
- Target polarization direction can control the $G_E G_M$ and G_M^2 terms.

Double-Polarization Asymmetry

• The double-polarization asymmetry is given by:

$$A_{phys} = \frac{-2\sqrt{\tau(1+\tau)}\tan\left(\frac{\theta}{2}\right)}{G_E^2 + \frac{\tau}{\epsilon}G_M^2} \left[\sin\left(\theta^*\right)\cos\left(\phi^*\right)G_EG_M + \sqrt{\tau\left[1+(1+\tau)\tan^2\left(\frac{\theta}{2}\right)\right]}\cos\left(\theta^*\right)G_M^2\right]}$$
(3)

- θ^* and ϕ^* are the polar and azimuthal angles of the polarization vector of the target.
- Target polarization direction can control the $G_E G_M$ and G_M^2 terms.
- The measured observable is given by (4) and relates to the true asymmetry by (5).

$$A_{meas} = \frac{N^+ - N^-}{N^+ + N^-},$$
 (4) $A_{meas} = P_t P_l A_{phys},$ (5)

- N^+ (N^-) is the normalized counting rate for positive (negative) beam helicity.
- P_t and P_l are the degrees of polarization of the target and beam.

• Unpolarized Rosenbluth measurements only sensitive to G_E^2 and G_M^2 .

Double-Polarization Asymmetry Cont.

- Unpolarized Rosenbluth measurements only sensitive to G_E^2 and G_M^2 .
- Double-polarization measurements are sensitive to the FF signs through the $G_E G_M$ cross term.
 - Choose target polarization to minimize G_M^2 term $(\cos(\phi^*) \approx 1 \text{ and } \theta^* \approx \frac{\pi}{2})$.
 - The zeros of the asymmetry correspond to the FF minima.

Double-Polarization Asymmetry Cont.

- Unpolarized Rosenbluth measurements only sensitive to G_E^2 and G_M^2 .
- Double-polarization measurements are sensitive to the FF signs through the $G_E G_M$ cross term.
 - Choose target polarization to minimize G_M^2 term $(\cos(\phi^*) \approx 1$ and $\theta^* \approx \frac{\pi}{2}$).
 - The zeros of the asymmetry correspond to the FF minima.
- Hypothesis test theoretical predictions.
 - Take G_E and G_M from theory and calculate/plot theory asymmetries.
- New independent tool to map FFs without the issues of unpolarized Rosenbluth measurements.

Double-Polarization Asymmetry Cont.

Figure 4: Double-polarization asymmetry at 2.216 GeV using the SOG fits in Reference (Barcus 2019). The points show the statistical uncertainty of the mean of each kinematic setting.

• Requires usual Hall C equipment (HMS/SHMS) in the standard configurations.

- Requires usual Hall C equipment (HMS/SHMS) in the standard configurations.
- HMS:
 - Positioned at single angle centered on the anticipated F_m diffractive minima for the entirety of the run.

- Requires usual Hall C equipment (HMS/SHMS) in the standard configurations.
- HMS:
 - Positioned at single angle centered on the anticipated F_m diffractive minima for the entirety of the run.
- SHMS:
 - Start at small angles and step up in Q^2 passing through the F_{ch} minimum and approaching just below F_m 's.
 - Will help constrain the location of the minima while mapping the asymmetry.

- Requires usual Hall C equipment (HMS/SHMS) in the standard configurations.
- HMS:
 - Positioned at single angle centered on the anticipated F_m diffractive minima for the entirety of the run.
- SHMS:
 - Start at small angles and step up in Q^2 passing through the F_{ch} minimum and approaching just below F_m 's.
 - Will help constrain the location of the minima while mapping the asymmetry.
- Uses ³He target developed for E12-06-110 and E12-06-121.

Length [cm]	Max Current [μ A]	Target Polarization	Beam Polarization
40	30	55%	85%

 Table 1: Expected ³He Target Characteristics

Proposed Procedure Cont.

• Parasitically make measurements at 2.216 GeV when experiment E12-06-121 (Sawatzky *et al.* 2006) takes data on beam-target polarization product.

	E _{beam} [GeV]		θ [°]	Q^2 [fm ⁻²]	Estimated Cross Section [mb/sr]	Rate [Events/hr]	Time [hr]
SHMS	2.216	k1	11	4.57	4.39×10^{-4}	2,605,270	1
		k2	13	6.34	5.14×10^{-5}	305,609	1
		k3	15	8.38	4.37×10^{-6}	25,946	1
		k4	17	10.66	2.22×10^{-7}	1,319	10
		k5	19	13.18	5.97×10^{-8}	355	11
HMS	2.216	kб	21	15.93	3.99×10^{-8}	427	24

Table 2: Spectrometer Central Kinematics

- High rate kinematics not statistics limited \rightarrow check systematics.
- Low Q² points will determine product of beam-target polarization.

Conclusions

Conclusions

- In collaboration with dⁿ₂ we proposed to measure the double-polarization asymmetry of ³He over a range of Q².
 - Parasitically uses time already allotted for measuring beam-target polarization product.

Conclusions

- In collaboration with dⁿ₂ we proposed to measure the double-polarization asymmetry of ³He over a range of Q².
 - Parasitically uses time already allotted for measuring beam-target polarization product.
- This will be the first high Q² measurement of ³He FFs using polarization observables.
 - Constrain the locations of the FF diffractive minima.
 - Provide new method to hypothesis test theory predictions.
 - Determine if polarization observables agree with unpolarized Rosenbluth results.
 - Help explain the discrepancies between theoretical predictions and experimental measurements of the ³He FFs.
- History has shown that polarization measurements can reveal problems with cross section extracted FFs (Jones *et al.* 2000).

- Thanks to the Aⁿ₁/Dⁿ₂ collaboration for welcoming us and supporting our run group proposal.
- Thanks to Shujie Li for running the MC simulations for rate estimates and many other contributions.
- Thanks to Brad Sawatzky for welcoming us to the collaboration and his guidance through this process.
- Thanks to Doug Higinbotham for organizing this process and keeping this proposal going year after year.
- Finally, thanks also to all those who worked to develop this proposal in the past including R. E. McClellan, J. Bericic, V. Sulkosky, T. Averett, and S. Sirca.

References

- Qattan, I. A. et al. (2005). "Precision Rosenbluth measurement of the proton elastic form-factors". In: Phys. Rev. Lett. 94, p. 142301.
- Mihovilovič, M. et al. (2019). "Measurement of double-polarization asymmetries in the quasi-elastic ${}^{3}\vec{He}(\vec{e},e'p)$ process". In: *Phys. Lett.* B788, pp. 117–121.
- (2014). "Measurement of double-polarization asymmetries in the quasielastic $^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e'd})$ process". In: Phys. Rev. Lett. 113.23, p. 232505.
- Barcus, S. (2019). "Extraction and Parametrization of Isobaric Trinucleon Elastic Cross Sections and Form Factors". Ph.D. Thesis. https://wm1693.app.box.com/s/dsya4olvfo891h73t415/file/437990479167, College of

William and Mary.

- Marcucci, L. E. et al. (2016). "Electromagnetic Structure of Few-Nucleon Ground States". In: Journal of Physics G: Nuclear and Particle Physics 43.2, pp. 1–64.
- Amroun, A. *et al.* (1994). "³H and ³He electromagnetic form factors". In: *Nuclear Physics A* 579, pp. 596–626.
- Sawatzky, B. et al. (2006). A Path to "Color Polarizabilities" in the Neutron: A Precision Measurement of the Neutron g₂ and d₂ at High Q² in Hall C. URL: https://www.jlab.org/exp_prog/proposals/06/PR12-06-121.pdf.
- Jones, M. K. et al. (2000). "G(E(p)) / G(M(p)) ratio by polarization transfer in polarized e p —¿ e polarized p". In: Phys. Rev. Lett. 84, pp. 1398–1402.