Hall C Beamline and Møller Polarimetry

Dave Gaskell A1n/d2n Collaboration Meeting July 24, 2019

Outline

- 1. Beamline
- 2. Møller Polarimeter

Beamline Modifications for Polarized ³He

Coils for polarized ³He will run into end of last girder when rotated to certain configurations

- → End of girder will need to be cut off – TO-DO
- → Requires relocation of MPS BCM - DONE
- → Radiator will need to be removed
- → Detailed drawings for beamline 100% complete – parts 98% complete
- → Target group will remove radiator
- → Engineering will modify beamline – work can be done in place (not yet scheduled)

Beamline Pictures

Bert Metzger

Collimator/narrow pipe

Beamline Pictures

Bert Metzger

Møller Polarimeter – Layout

Additional large quad added for operation at higher energy \rightarrow Both quads wired in series, operated by one power supply

For operation at low energy (1 pass), need to use Q3 only

- \rightarrow Will require slight reconfiguration of quad power cables
- \rightarrow If prepared ahead of time, should only take 1-2 hours
- → May cause some confusion for OPS since these quads are also used for beamline optics

Møller Polarimeter Tasks

- Test Møller at end of summer run. Not highest energy \rightarrow 4.6 GeV
- Tasks to get Møller ready
 - Test cooldown, verify cryo system controls; January 2019; Hall C
 + Cryo → Complete
 - Connect new power supply to upgraded AC distribution in hall; Summer 2018; Hall C + Lab Electricians → Complete
 - Check out detectors repair if needed; Summer 2018; Hall C → Complete
 - Install shielding near beamline and detectors; Summer 2018;
 Hall C → Complete
 - − Revive DAQ; Summer 2018; Hall C → Complete
- New Møller OSP has been reviewed and approved
- Run preparation tasks
 - Update OPS Møller Procedure (very few changes needed)
 - − Update Monte Carlo with new magnet maps → Complete
 - Generate nominal settings for upcoming run

Test Cooldown and Ramp

January 24, performed a test cooldown of the Møller solenoid

- → Solenoid has not been cooled or turned on since 2012
- \rightarrow Cryo configuration during Q-Weak was unusual
 - Wanted to test after return to normal configuration

Solenoid cooled down successfully - ramped to 3 T

Møller Solenoid/Cryo Issues

During cooldown – discovered some issues to be resolved

- LHe/LN2 level meter was not working → Chris Keith found a spare marked "Hall C"
- 2. Some supply instrumentation not reading out (T and P sensors)
- (Software) readback of solenoid field not correct → solved by Sue Witherspoon
- Cooldown valve, warm return bypass valves not acting correctly → still to be resolved

Remaining issues will be resolved during next down

Møller Shielding

Extra detector shielding added as part of 12 GeV beamline design (Q-Weak saw higher backgrounds) \rightarrow part of this extra shielding installed during summer 2018 SAD

 \rightarrow Test run will help judge whether more shielding is required – can be installed during summer down

New Møller Solenoid

Existing target solenoid will be replaced with conduction-cooled (cryogen free) magnet \rightarrow In use in Hall A starting 2014

Contract awarded to American Magnetics – system won't be delivered until January-February of 2020, so can't/won't be used for A1n/d2n

Møller Polarimetry – Precision and Strategy

Precision of Møller measurements expected to be < 1%

 \rightarrow Time dependence of beam polarization also needs to be tracked in between intermittent Møller measurements

Polarization changes mostly come from:

- Changes at source → Spot at photocathode, heat-and-reactivation, quantum efficiency
- 2. Changes in beam energy \rightarrow change spin precession and spin direction at hall

We can keep track of and correct for these effects

Residuals from fit to Møller data

Møller Measurements, Polarization Tracking During Experiment

- Møller measurements should be done by a small group of people → a written procedure exists, but measurements go better with experienced/trained group
- During Q-Weak, had a team of 3-5 people for 2-3 measurements/week – for A1n/d2n need at least 2
- Final polarization values generally generated by collaborator/student → compares systematic checks against Monte Carlo, etc.
- Should also have someone dedicated to tracking the time dependence of the polarization
 - Monitor QE, beam energy, etc.
 - Help decide when "extra" measurements might be needed

Møller Analyzer

- Existing Møller analyzer has been in use since 1990's → FORTRAN/HBOOK based
- Some work was done in 2010 to try and port the analyzer to C++/Root
 - This was partially completed (could analyze scaler data, but not ADCs/TDCs), but never finished or used for production data
- Would like an analyzer based on "modern" language, but minimizing dependence on other, large packages

GEANT4 Simulation

Existing/6 GeV Møller simulation is a FORTRAN, aperture-checking Monte-Carlo

→ Based on simulation from SLAC SLC-linac Møller polarimeter [M . Swartz et al, NIMA 363 (1995) 526-537]

GEANT4 MC has been under development in Hall A

- → Summer 2018, this simulation was ported for Hall C setup (Alyssa Petroski, Holly Szumila-Vance)
- → Major components in place a few detailed geometry issues to be resolved

https://github.com/JeffersonLab/hallc-moller-polarimeter

Summary

- Modest amount of work remaining for Hall C beamline
 - Remove radiator, cut girder
 - Install narrow "collimator" pipe, install downstream pipe with Be window
- Møller polarimeter mostly ready
 - DAQ, detectors, target ready, test cooldown complete
 - Initial commissioning at end of summer run
 - Need to start planning for measurements and analysis

New Møller Target Foils and Ladder

During Summer 2018, Dave Meekins designed new target ladder \rightarrow smaller foil aperture, easier to get thick foils "flat" \rightarrow New iron foils installed (4 µm, 10 µm, 10 µm)

Expected Møller Performance at 11 GeV

Monte Carlo studies by Kamilah Walker – Phoebus High School

Source	Uncertainty	dA/A (%)		Average	
Beam x position	0.5 mm	0.058	0.103	0.081	
Beam y position	0.5 mm	0.000	0.045	0.023	
Beam x angle	0.5mradians	-0.039	0.289	0.125	
Beam y angle	0.5mradians	0.039	0.116	0.078	
Q1 current	2.00%	0.077	0.129	0.103	
Q3 (and Q2) current	2.50%	-0.019	0.411	0.196	
Q1 position	1 mm	-0.008	-0.008	-0.008	
Q3 position	1 mm	0.000	0.000	0.000	
Multiple scattering	10.00%	0.064	0.064	0.064	
Radiative corrections	10.00%	-0.022	-0.022	-0.022	
Levchuk effect	10.00%	0.295	0.295	0.295	
Collimator positions	0.5 mm	0.088	0.088	0.088	
Solenoid focusing	100.00%	0.013	0.013	0.013	
Solenoid position	0.5 mm	-0.006	-0.006	-0.006	Total systematic
					Total Systematic
Constant sources of unc.					error comparable
Target temperature	100.00%	0.14	0.14	0.14	to Q-Weak
B-field direction	2 deg.	0.14	0.14	0.14	
B-field strength	5.00%	0.03	0.03	0.03	
Spin polarization in iron		0.25	0.25	0.25	
Electronic DT	100.00%	0.04	0.04	0.04	
High current extrapolation		0.5	0.5	0.5	
Monte Carlo statistics		0.12	0.12	0.12	
Total		0.69	0.87	0.74	

Møller Polarimeter – New optics

Hall C Songsheet - Hall

Hall C Songsheet – Green wall to Hall

