
Offline Tracking
Status & Plans

Norman Graf (SLAC)

HPS Collaboration Meeting @ JLab
May 30, 2019

The Global View
 Glass half full:
 The tracking and vertexing works…

 Multiple theses
 Physics publication

 Glass half empty:
 We could be doing (much) better

 Better & faster simulation
 Better & faster calibration / alignment
 Better & faster reconstruction
 Better tracking efficiency
 Improved track and vertexing resolutions

 What do we NEED for this run NOW?
2

Tracking Triage
 New Detector
 Correctly handle new L0 sensor
 Survey positions for all subdetector elements,

including magnet, target(s), etc.
 New Tracking Strategies
 Run Plan for Alignment/Calibration
 Field-off, FEE, SVT wire target, …

 Manpower to analyze the data, align/calibrate the
detector, improve the software.

3

New SVT Layout
 Added new Layer0
 Swapped Layer0 sensor into “slim” Layer1

4

Handling Layer0 Sensor
 The new Layer0 sensor has split strips, read out from

both sides.
 Had previously simulated these sensors by creating two

sensors, similar to layers 4-6.
 Had expected that we could handle real data with a

simple modification to the DAQ map which assigns
electronics readout channel number to silicon strip.

 Realized just recently that this will not work for both MC
and data.

 Resolution of this involves re-architecting some of the
base classes which handle the sensors and electrodes.

 Manpower split between SVT hardware and software.
 Hardware taking priority.

 Recognized as a critical path item.
5

Detector Survey
 Need to incorporate survey information into a

new 2019 Detector description.
 All SVT sensors
 Magnet location and orientation wrt (0,0,0)
 Target(s) and field-off target locations

6

Software CPU Performance
 Our tracking software is SLOW!

 Not a critical issue for 2015/6, definitely an issue now.
 Have detailed profiling data, but there has been no appreciable

action to-date
 Overall CPU budget dominated by tracking, primarily track-

finding/fitting, followed by raw hit-fitting
 Fitting SVT readout samples to determine hit time and

pulse height
 Currently using generic minuit fit
 Need to evaluate possible gains from a dedicated fitter
 Fit once in pass0, don’t refit in later passes.
 Effort started with rotation student at SLAC, will be continued.
 If C++/root-based approach is faster/better, may implement an

intermediate step in processing
 Split large evio file→fit SVT t0/amplitude→ write smaller lcio

files→ reconstruct with hps-java

7

Track Finding
 By default we will continue to run the

SeedTracker pattern recognition, which creates
3D hits from pairs of axial & stereo strip clusters.

 Will want to run the StrategyBuilder to create a
new set of track-finding strategies that include
Layer0 and “slim” Layer1.

 Fall-back is to utilize 5-hit tracking based on
layers 2-6.

 Working on alternative track-finding algorithms
for full production and final analysis.

8

Plan for alignment-related activities: data
requirements

• Data for alignment
– Alignment with straight tracks always more advisable due to

the (coarse) available precision of the magnetic field mapping,
especially in the fringe field regions

– In 2016 one run only without magnetic field was taken, and
the end of the data taking

• Too few data
• Not representative enough for the whole data taking period

– At least 3-5 times more statistics would be desirable, if
possible spread along the full data taking (e.g.: one stock of
data at the beginning, one along the run, one at the end of
the data taking)

• Data for calibration
– FEE tracks for momentum calibration (but not really sure

dedicated trigger runs are necessary)
9

Software status: reconstruction and
interface to alignment

• Reconstruction: two critical issues
– New entry: layer 0

• Integrate in the geometry (done but beware: the chosen geometry must be
a steady version common to REC and MC, otherwise it won’t be possible to
train the alignment machinery on MC data)

• Adapt the Millepede framework to match the new layout with layer0
– Extract the new information provided by the tracking (hits on the new layer)
– Provide Millepede with an additional layer for offsets calculations

» Provide/check new coordinates, derivatives, tranformations between
local/lab reference systems

– Change accordingly the BuildMillepedeCompact class which translates the
offsets found my MP into a new compact.xml file

• Revise the DetectorConverter class for geometry preparation and
visualization (e.g. DrawLCDD.py on lcdd files)

– Revision of straight track reconstruction code
• Changes are due for the insertion of the new layer
• Remember that we always got different outputs for the best aligned

geometry if using straight or curved tracks!
– Still needs to be fixed and carefully tested 10

A. Filippi

Software status: alignment
tools
• hps-java has been modified in order to provide directly

Millepede with a binary input upon reconstruction

– Before: an ascii file was written and read by a python procedure
preparing the input for MP (very time and resource consuming, BUT
all the refits and intermediate steps following GBL application could
be under control at each stage)

– Now: the binary file is written directly by hps-java
• Same source as reconstruction output
• Tested on 2016 curved tracks, it works
• Never tested on straight tracks
• To be tested carefully with the additional layer (check consistency,

correspondences, …)
• Note: there is no backward compatibility between the two procedures (so

we must get it fully working as it is now)
• Output format: root file

– Adapt existing macros
– Check if all needed information is available, add missing items

11
A. Filippi

Summary: to-do list for
alignment readiness

• Reconstruction
– Revise straight tracks

reconstruction: procedure
and output format

– Check output for Millepede
processing with the
additional layer0

– Make sure of consistency of
all information to be
provided to Millepede in
the binary file

– Revise DetectorConverter
package

– Revise functionality of
geometry visualization
tools (based on SLIC: so the
geometry must be
consistent in rec and
simulation)

• Alignment software
– Check Millepede interface for

data readout (one more layer)
and input to the minimization
program

– Tune rootfile output
• Additional histograms for new

layers
• Check is some important

information is missing
• Revise macros for the

visualization of residuals,
momentum spectra,
radiographies, etc.

– Modify the
BuildMillepedeCompact class
to write the compact.xml file
corresponding to a new
geometry

12Helpers welcome! (as usual)A. Filippi

Alignment Moving Forward
 Include beam spot (and ECal?) into alignment

procedure using single-tracks
 Include vertex constraint for multiple track events

 Couples top and bottom halves of detector
 Constrains weak (momentum) mode

13

Track Reconstruction Software
 Track finding and fitting were adapted from

software developed for generic collider detectors
 Adoption of this software allowed rapid

development during the design phase of HPS but
required a few compromises
 Use of a generic geometry definition and pattern-

recognition system.
 Fast for development, not optimized for production.

 Rotation of our coordinate system to spoof a
solenoidal field

 Use of track parameters not natural for a fixed-target
geometry.

14

Pattern Recognition
 Possible improvements:
 Improved axial/stereo matching (L4-L6)
 Improved and/or more strategies using 3D points
 Cluster-seeded tracking

 ECal cluster position and energy define a trajectory which
originates from the beam-spot (HPS Note 2015-006).

 Find tracks consistent with that hypothesis.
 Implement pattern recognition based on 1D strip hits.

 No “ghost” hits, or parallax issues
 Could see increased efficiency by not requiring hits in both

axial and stereo layers per station.
 Fits naturally into a Kalman Filter approach.

15

https://misportal.jlab.org/mis/physics/hps_notes/viewFile.cfm/2015-006.pdf?documentId=8

Kalman Filter Status
R.P. Johnson

May 25, 2019

Kalman Filter Objective
• Develop a new pattern recognition program that

• Never makes use of “3-D hits”, for improved efficiency.
• Makes use of the full non-uniform field map.
• Uses statistically meaningful error estimates for picking up hits.

• The objective has not been to replace the existing GBL fit
• In principle the GBL and Kalman fits should be more-or-less

equivalent.
• However, in the process of doing this we did discover that the GBL

fit assumes a uniform field, which may have some disadvantage.
• We also uncovered a serious bug in the HPS field map files (which

was corrected some time ago).
• The Runge-Kutta integration code written for the Kalman Filter

implementation and testing was adapted by Miriam to extrapolate
tracks to the target and to the electromagnetic calorimeter.

Existing Code
• SeedTrack: does a simultaneous linear fit to a circle and line

(helix approximation), to generate “guess” helix parameters
and covariance for starting the Kalman filter.

• Requires at least 3 stereo hits and 2 axial hits.

• KalmanTrackFit2: executes the Kalman filter and smoothing
steps for a given set of hits.

• Starts in the 4th or 5th layer and filters toward the target (in
anticipation of the likely direction of a pattern recognition algorithm).

• Then it restarts at the target end, filters to layer 6, and smooths back
to the target.

• KalmanPatRecHPS: first attempt at a combinatorial pattern
recognition based on the SeedTrack and Kalman code.

• KalmanDriverHPS and KalmanInterface: code by Miriam to
interface with the HPS Java programs.

Kalman Filter Fitting Code Status
• The mathematics of the Kalman Filter code has been

thoroughly tested by means of an idealized simulation:
• Complete geometry of ½ of the HPS silicon tracker, using the

surveyed positions and angles.
• Runge-Kutta integration of a simulated particle through the HPS

field.
• Gaussian smearing of Si intersection points by 6-micron resolution.
• Gaussian multiple scattering in each silicon plane.

• The pull distributions in each layer are very close to being
normal (except for some skew in Layer 6).

• The distributions of helix-parameter errors (relative to MC
truth), divided by error estimates, are normal.

• The chi-squared of the helix parameters calculated from the
full 5×5 covariance matrix is distributed correctly for a chi-
squared distribution with 5 d.o.f.

Mathematical Issues
• The fit chi-squared, summed over the 12 layers, has a mean

of 12, as in a chi-squared distribution for 12 d.o.f., but the
rms of the distribution at ~10 is significantly larger than the

24 expected for a chi-squared distribution of 12 d.o.f.
• To understand this better, a toy Kalman filter for a 2-D line fit with

multiple scattering was written, and it showed the same behavior.

• The pull distributions in Layer 6 (11th and 12th planes) are
noticeably asymmetric. The asymmetry goes away if the
magnetic field is made uniform.

• Putting dummy planes in between layers 5 and 6, to take smaller
steps in the field, does not help.

• We’re still looking to make sure there isn’t an error in the
coordinate transformations used to handle field non-uniformities.

Kalman Filter in HPS Java
• The interface code originally written by Miriam runs the Kalman fitting

code on exactly the same hits as used by GBL.
• The initial guess can be the GBL fit or can be generated from SeedTrack.
• Histograms are filled to compare the results between Kalman and GBL.

• With 12 hits the Kalman mean 𝜒𝜒2 at 26 is about double that of the GBL
and has a larger tail.

• The two programs agree quite well on the rms kink in each layer.

• Comparing fit results against MC truth is similar between the two:

Plans
• There is still some concern about the asymmetric pull

distributions in Layer 6, so we will investigate more the code
used to handle the non-uniform B field.

• Work will continue on comparing with Monte Carlo truth,
hoping to compare at the individual hit level.

• This will be especially important for pattern recognition
development.

• Integrate the pattern recognition code into HPS Java and
start testing and tuning it on realistic MC events.

Manpower
 Many of the principal developers of the

tracking/vertexing software have moved on
 Opportunities abound for individuals or

institutions to contribute, either improving existing
software or developing/implementing new code.

23

Summary
 Current code and algorithms are working, but…
 Correct handling of new Layer0 sensors requires

some code re-architecting: critical path item.
 Need to define new Detector ASAP.
 Need manpower for alignment/calibration.
 Major changes are unlikely before the start of the

run, but current track finding/fitting should be
good enough for data quality monitoring.

 Lots of ideas for improvement.
 Great opportunities for new contributors.

24

Longer Term Tracking Goals
 Improve the readout pulse-shape fits
 Enable next passes to start from existing fits

 Improve pattern recognition
 Refine strategies, implement cluster-seeded algs.
 Implement strip-based algorithms (e.g. Kalman)

 Improve fitting
 Correctly handle scattering and energy loss
 Include full fits at multiple track states

 Allow for true residuals to be calculated/monitored

 Reduce output size (drop unnecessary
collections)

 Speed everything up.
25

	Offline Tracking�Status & Plans
	The Global View
	Tracking Triage
	New SVT Layout
	Handling Layer0 Sensor
	Detector Survey
	Software CPU Performance
	Track Finding
	Plan for alignment-related activities: data requirements
	Software status: reconstruction and interface to alignment
	Software status: alignment �tools
	�Summary: to-do list for�alignment readiness
	Alignment Moving Forward
	Track Reconstruction Software
	Pattern Recognition
	Kalman Filter Status
	Kalman Filter Objective
	Existing Code
	Kalman Filter Fitting Code Status
	Mathematical Issues
	Kalman Filter in HPS Java
	Plans
	Manpower
	Summary
	Longer Term Tracking Goals

