Radiative Fraction and Selection Cuts for the 2016 Vertex Search
 Bradley Yale
 05/30/2019
 Spring 2019 HPS Collaboration Meeting

Contents

- 2016 radiative event selection cuts
- Selection criteria
- New cut proposal with a high wab/A' rejection
- Radiative fraction
- Vs. radiative cut
- How the new cut affects it

Preliminaries

- 2016 pass4 MC:
/mss/hallb/hps/production/PhysicsRun2016/pass4/npt224npt08n4pt3_npt33/recon/
- RAD-WBT:
- Radiative tridents with "wab-beam-tri" background events in the trigger window
- Tritrig-WB:
- Full tridents with "wab-beam" background events in the trigger window
- Wab-BT:
- Wide-angle bremsstrahlung with "beam-tri" background events in the trigger window
- $A^{\prime}-W B T:$
- Displaced A's with "wab-beam-tri" background events in the trigger window

Preliminaries

$$
\left\{\theta_{x}, \theta_{y}\right\}=\{-0.33,-0.33\} \mathrm{mrad}
$$

- 2016 pass4 MC:

$$
\{x, y, z\}=\{-0.224,-0.08,-4.3\} \mathrm{mm}
$$

/mss/hallb/hps/production/PhysicsRun2016/pass4/npt224npt08n4pt3_npt33/recon/

- RAD-WBT:
- Radiative tridents with "wab-beam-tri" background events in the trigger window
- Tritrig-WB:
- Full tridents with "wab-beam" background events in the trigger window
- Wab-BT:
- Wide-angle bremsstrahlung with "beam-tri" background events in the trigger window
- $A^{\prime}-W B T:$
- Displaced A's with "wab-beam-tri" background events in the trigger window

Radiative Event Selection Criteria

Idea:

- Normalize RAD, tritrig, wab by cross section $\left(\frac{\sigma_{\text {generated }}}{\# \text { generated }}\right)$
- Look at overlain plots, signal vs. noise, and cumulative significance
- Make a judgement on where to put cuts

Min. Track Chi2 < 15

Min Track Chi2

Min. Track Chi2 < 15

Signal Significance (Min Track Chi2)

Track Chi2 Sum < 35

Track Chi2 Sum < 35

Signal Significance (Track Chi2 Sum)

Matching Chi2 (NSigma) Sum < 6 (+ min. Track Chi2 < 3)

Track/Cluster Matching Chi2 Sum

Track/Cluster Matching Chi2, ele vs. pos

Electron Momentum < 1.4GeV (FEE cut)

Electron Momentum

No Positron Momentum Cut

Signal Significance (Positron Momentum)

A few more "useless" cuts for MC (to be set using data)

Cluster Coincidence

But for the Radiative Cut...

Radiative Cut

Radiative Cut

Signal Significance (Unc Momentum)

Radiative Fraction, pSum > 1.2GeV (plus all other cuts so far)

Radiative Fraction ($\mathrm{pSum}>1.2 \mathrm{GeV}$)

Radiative Fraction, pSum > 1.2GeV (plus all other cuts so far)

Radiative Fraction ($\mathrm{pSum}>1.2 \mathrm{GeV}$)

Radiative Fraction, pSum > 1.5 GeV (plus all other cuts so far) $\backslash \substack{\text { Ssebouns } \\ \text { Bumphunt }}$

Radiative Fraction ($\mathrm{pSum}>1.5 \mathrm{GeV}$)

Radiative Fraction, pSum > 1.8GeV (plus all other cuts so far)

Radiative fraction

Radiative Fraction, pSum > 1.9GeV (plus all other cuts so far)

Radiative Fraction ($\mathrm{pSum}>1.9 \mathrm{GeV}$)

Radiative Fraction vs. Radiative Cut

Radiative Fraction vs. Radiative Cut

Vertexing Cut Summary (pairs1)

- Opposite volumes: $\quad \tan \lambda_{1} * \tan \lambda_{2}<0$
- Isolation Cut:
$\min \left\{\right.$ Iso $_{e l}+0.5 *\left(z_{\text {tar }}\right) * \operatorname{sign}\left(p_{y, e l}\right)$, Iso $\left._{\text {pos }}+0.5 *\left(z_{\text {tar }}\right) * \operatorname{sign}\left(p_{y, p o s}\right)\right\}>0$
- Elastics/FEE: $\quad p_{\mathrm{el}}<1.4 \mathrm{GeV}$
- Radiative Cut: $\quad p_{\text {unc }}>1.8 \mathrm{GeV}$
- Cluster Coincidence: $\left|t_{\text {clust } 1}-t_{\text {clust } 2}\right|<2 n s$

Chi^2 cuts:
TBD from data

- $\min \left(\chi_{t r a c k, e l}^{2}, \chi_{t r a c k, p o s}^{2}\right)<15$
- $\chi_{\text {track, el }}^{2}+\chi_{\text {track, pos }}^{2}<35$
- $\min \left(\chi_{\text {match, el }}^{2}, \chi_{\text {match }, \text { pos }}^{2}\right)<3$
- $\chi_{\text {match }, \text { el }}^{2}+\chi_{\text {match }, \text { pos }}^{2}<6$

Wab rejection:

- L1/L1: Pair1, eleHasL1, posHasL1 \&\&L2L2
- Momentum Asymmetry: $\left|p_{e l}-p_{p o s}\right| /\left(p_{e l}+p_{p o s}\right)<0.6 \longleftarrow$ Not really needed for MC, may be useful for data
- Positron DO: $\quad d_{\theta, p o s}+(-4.3 \mathrm{~mm}) * \operatorname{posPX} / \operatorname{pos} P<0.8 \mathrm{~mm}$
- Positron target-constrained X-Tilt difference cut
New

Also cuts displaced A's, an alternative is needed

Replacement for the positron DO cut?

"Positron X-Tilt difference cut"

"Positron X-Tilt difference cut"

"Positron X-Tilt difference cut"

Looking at RAD, tritrig, wab...

Positron XTilt (unconstrained-tc)

Looking at RAD, tritrig, wab...

Positron XTilt (unconstrained-tc)

Looking at RAD, tritrig, wab...

Signal Significance (Positron XTilt)

Cut Flows

Invariant Mass Cut Flow (All Tridents)

Cut Flows

Invariant Mass Cut Flow (60MeV Displaced A's)

Cut Flows

Invariant Mass Cut Flow (60MeV Displaced A's)

Z-Vertex vs. Positron X-Tilt Diff.

Z-Vertex vs. Positron X-Tilt Diff.

WABs (all other vertexing cuts)

Vertex vs. Mass (converted WABS)

WABs (all other vertexing cuts)

Vertex vs. Mass (converted WABS)

Compare to 60 MeV A's...

Vertex vs. Mass (60 MeV displaced A's)

Vertex vs. Mass (60 MeV displaced A's)

Radiative Fraction, pSum > 1.8GeV (without posXTilt cut)

Radiative Fraction, pSum > 1.8GeV (including posXTilt cut)

Radiative Fraction ($\mathrm{pSum}>1.8 \mathrm{GeV}$)

Summary

- The 2016 radiative fraction is still at $\sim 15 \%$, if using the previous pSum>1.5GeV radiative cut
- This should be tighter for vertexing, since the search is more about excluding backgrounds than searching for a bump on top of it
- pSum $>1.8 \mathrm{GeV}$ gives a radiative fraction of 17%
- Displaced A's do not seem to be affected by a target-constrained px/pz cut as cWABs are (why?).
- If adding this cut to the others, the radiative fraction increases to $18-19 \%$
- It also eliminates some high-z background
- Are there even better cuts, that exploit A^{\prime}-wab differences?

Radiative Fraction, pSum > 1.3GeV (plus all other cuts)

Radiative Fraction (pSum > 1.3GeV)

Radiative Fraction, pSum > 1.4GeV (plus all other cuts)

Radiative Fraction ($\mathrm{pSum}>1.4 \mathrm{GeV}$)

Radiative Fraction, pSum > 1.6GeV (plus all other cuts)

Radiative Fraction ($\mathrm{pSum}>1.2 \mathrm{GeV}$)

Radiative Fraction, pSum > 1.7GeV (plus all other cuts)

Radiative Fraction ($\mathrm{pSum}>1.2 \mathrm{GeV}$)

