Before-Dinner Discussion

Yuri Kovchegov & Andrea Signori

Proton Spin

Proton Spin Puzzle

- Current experimental status of helicity PDFs
- OAM
- Lattice results
- Small-x
- What is he roadmap to solving the spin puzzle

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

What forms the Spin of the Proton

Spin is more than the number ¹/₂ ! It is the interplay between the intrinsic properties and interactions of quarks and gluons

`PDF' for OAM?

Take the staple-shaped Wilson line and define

$$L^{q,g} = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$
$$L^{q,g}(\mathbf{x}) = \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(\mathbf{x}, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Agrees with Harindranath, Kundu (1998); Hagler, Schafer (1998) in the light-cone gauge.

Warning: This is NOT the usual (twist-two) PDF.

Y. Hatta, INT EIC program, 2018

Observables for OAM

Y. Hatta, INT EIC program, 2018

Essentially the measurement of Wigner/GTMD . Tag two hadrons (jets) in the final state, together with the recoiling proton

Relative momentum between the two hadrons $W(x,k_{\perp},\Delta_{\perp})$

Recoiling proton momentum

Ji, Yuan, Zhao (2017); YH, Nakagawa, Xiao, Yuan, Zhao (2017), Bhattacharya, Metz, Zhou (2017); Bhattacharya, Metz, Ojha, Tsai, Zhou (2018)

The proton spin from LQCD

[C. Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017), [arXiv:1706.02973]]

M. Constantinou, ANL Colloquium (May 10th 2019)

Spin decomposition

[C. Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017), [arXiv:1706.02973]] MS(2GeV) JN 1/2 Σ, 0.4 0.5 L_d 0.3 0.4 108(16)%0.2 0.3 0.1 82(16)% 0.0 0.2 27(3)% $\frac{1}{2}\Sigma_{s}$ -0.1 (4)%0.1 -0.2 $\frac{1}{2}\Sigma_d$ 0 s u+d+s g Total d 11

Contributions (connected)Quark orbitaQuark orbitaextracted in

★ Solid segments: disconnected contributions (quark & gluon)

Satisfaction of spin and momentum sum rule is not forced

36

Quark orbital angular momentum extracted indirectly ($L_q = J_q - \Sigma_q$)

L_{u+d+s}

 $\frac{1}{2} \Sigma_{u+d+s}$

m sum r

Helicity PDFs at Small-x

- Theoretical calculations by Bartels, Ermolaev and Ryskin (BER, 1996) and by YK, Pitonyak and Sievert (2015-17, KPS).
- KPS results (large-N_c):

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$\Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G} \quad \text{with} \quad \alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

• BER results at large-N_c (for both quark and gluon helicity distributions):

$$\alpha_h^{BER} = \sqrt{\frac{17 + \sqrt{97}}{2}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 3.66 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

For finite N_c and N_f=4 BER have 3.66 \rightarrow 3.45.

Helicity PDFs at Small-x

 $PDF(x) \sim \left(\frac{1}{x}\right)^{\alpha}$

• The summary of the existing powers of x is

			$Q^2 = 3 \mathrm{GeV}^2$	$Q^2 = 10 \mathrm{GeV^2}$	$Q^2 = 87 \text{ GeV}^2$
Observable	Evolution	Intercept	$\alpha_s = 0.343$	$\alpha_s = 0.249$	$\alpha_s = 0.18$
Unpolarized flavor singlet	LO BFKL Pomeron	$1 + \frac{\alpha_s N_c}{\pi} 4 \ln 2$	1.908	1.659	1.477
structure function F_2					
Unpolarized flavor non-singlet	Reggeon	$\sqrt{\frac{2\alpha_s C_F}{\pi}}$	0.540	0.460	0.391
structure function F_2		-			
Flavor singlet	us (Pure Glue)	$2.31\sqrt{\frac{\alpha_s N_c}{2\pi}}$	0.936	0.797	0.678
structure function g_1^S	BER (Pure Glue)	$3.66\sqrt{\frac{\alpha_s N_c}{2\pi}}$	1.481	1.262	1.073
	BER $(N_f = 4)$	$3.45\sqrt{\frac{\alpha_s N_c}{2\pi}}$	1.400	1.190	1.011
Flavor non-singlet	BER and us (large- N_c ,	$\nabla \pi$	0.572	0.488	0.415
structure function g_1^{NS}					

- Similar disagreement exists for OAM distributions at small x.
- However, even the smaller KPS powers lead to potentially important contributions to the proton spin coming from small x. (next)

Impact on proton spin

• We have attached a $\Delta \tilde{\Sigma}(x, Q^2) = N x^{-\alpha_h}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

Impact on proton spin

• Defining $\Delta\Sigma^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^{1} dx \, \Delta\Sigma(x, Q^2)$ we plot it for x₀=0.03, 0.01, 0.001:

- We observe a moderate to significant enhancement of quark spin.
- More detailed phenomenology is needed in the future.

Impact of our ΔG on the proton spin

• We have attached a $\Delta \tilde{G}(x,Q^2) = N x^{-\alpha_h^G}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

"ballpark" phenomenology

Impact of our ΔG on the proton spin

• Defining $S_G^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^1 dx \, \Delta G(x,Q^2)$ we plot it for x₀=0.08, 0.05, 0.001:

- We observe a moderate enhancement of gluon spin.
- More detailed phenomenology is needed in the future.