

# QCD Evolution 2019

# Phenomenological analysis of partonic Sivers distribution

Filippo Delcarro





#### Outline

#### Introduction to Sivers and phenomenology of TMDs

- Extraction of Sivers function
  - Relation between experimental observables and TMDs
  - Relation between unpolarized TMDs and Sivers distribution
  - Our choices for parametrization
  - Overview of experiments and data considered
  - Results and comparisons

#### **Outlook**

#### Transverse Momentum Distributions: TMD PDF

quark pol.

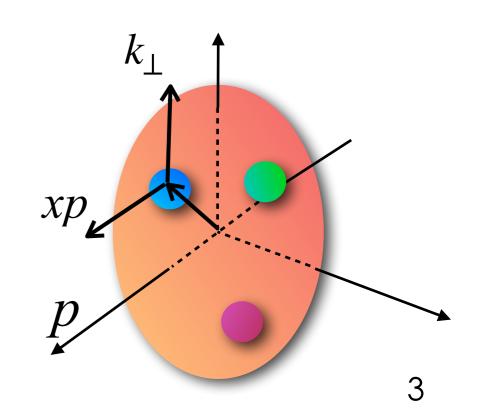
nucleon pol.

|   | U                | L        | T                  |
|---|------------------|----------|--------------------|
| U | $f_1$            |          | $h_1^{\perp}$      |
| L |                  | $g_{1L}$ | $h_{1L}^{\perp}$   |
| T | $f_{1T}^{\perp}$ | $g_{1T}$ | $h_1,h_{1T}^\perp$ |

#### Sivers function

#### dependence on:

longitudinal momentum fraction  ${\it X}$  transverse momentum  $k_{\perp}$  energy scale



#### Phenomenology of polarized TMDs

 $\Rightarrow$  presence of a non-zero Sivers function  $f_{1T}^{\perp}$  will induce a dipole deformation of  $f_1$ 

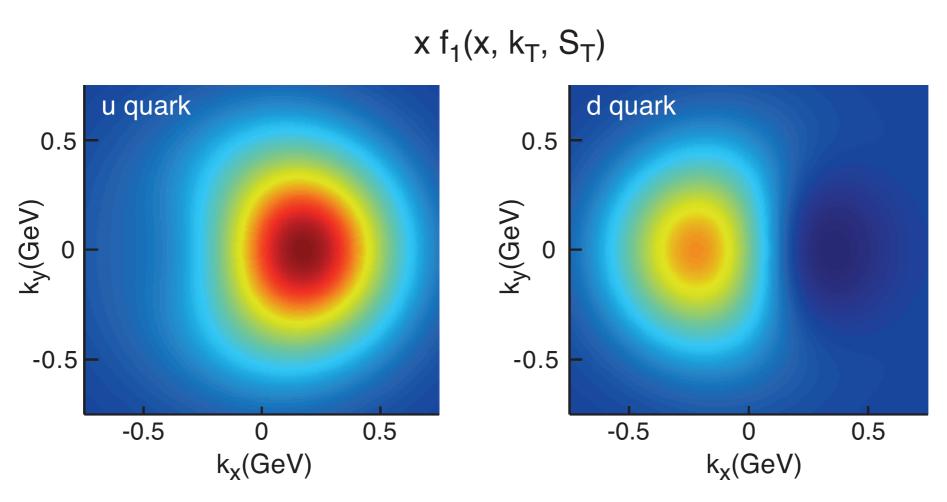


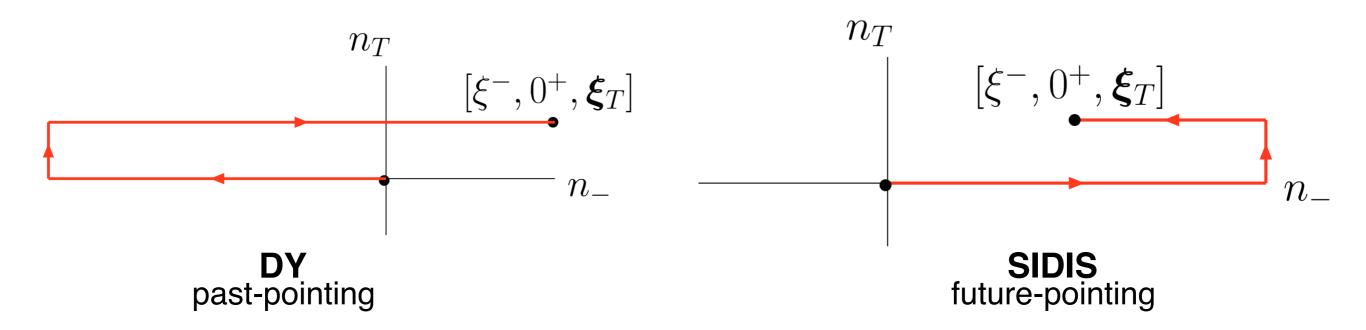
Figure 2.13: The density in the transverse-momentum plane for unpolarized quarks with x=0.1 in a nucleon polarized along the  $\hat{y}$  direction. The anisotropy due to the proton polarization is described by the Sivers function, for which the model of [77] is used. The deep red (blue) indicates large negative (positive) values for the Sivers function.

[ EIC White Paper ]

## Sivers function sign change

vanishing Sivers function? →

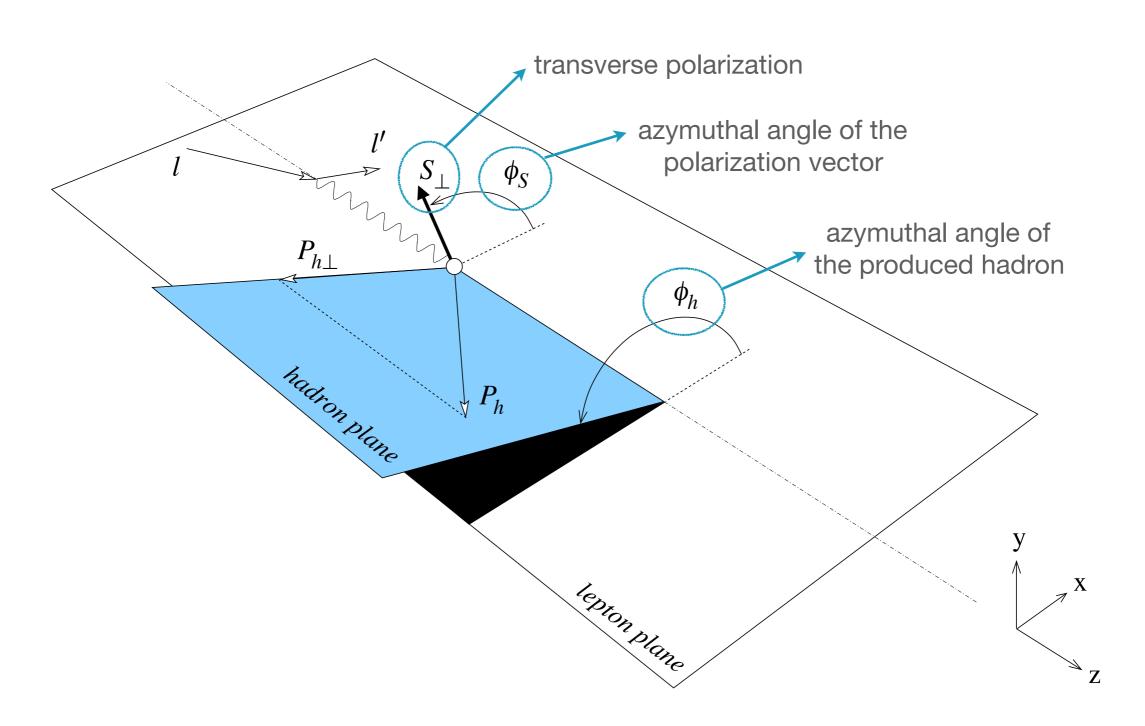
Final state interactions and Wilson lines to consider

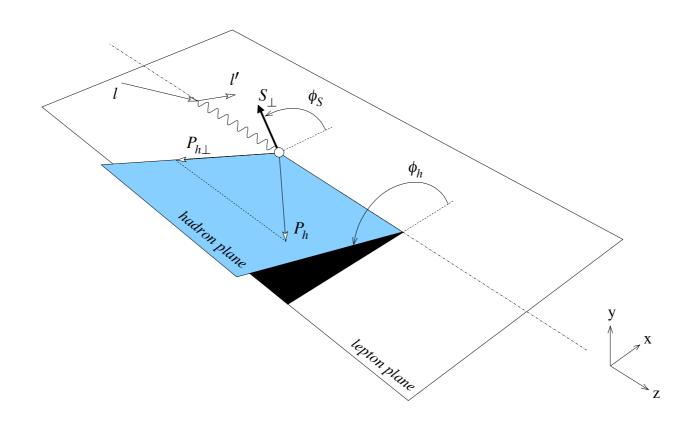


Sign change in Sivers function

$$f_{1T,DIS}^{\perp} = -f_{1T,DY}^{\perp}$$

The Sivers function can be determined through its contributions to the cross section of the polarized SIDIS process.





$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h d\boldsymbol{P}_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sin(\phi_h - \phi_S) |\boldsymbol{S}_T| \left[ F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right] + \cdots \right\}$$

contributions from other spin structure functions

the spin structure function  $F_{UT}^{\sin(\phi_h-\phi_S)}$  is a convolution of the Sivers function  $f_{1T}^\perp$  with the unpolarized fragmentation function  $D_{h/q}$ 

7

Isolating the terms relevant to the  $\sin(\phi_h - \phi_S)$  modulation

$$A_{UT}^{\sin(\phi_h - \phi_S)} = \frac{\int d\phi_S \, d\phi_h \left[ d\sigma^{\uparrow} - d\sigma^{\downarrow} \right] \sin(\phi_h - \phi_S)}{\int d\phi_S \, d\phi_h \left[ d\sigma^{\uparrow} + d\sigma^{\downarrow} \right]}$$



in terms of structure functions

$$A_{UT}^{\sin(\phi_h - \phi_S)} = \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

we will consider only the terms at order  $\alpha_{S^0}$ 

#### LO - NLL

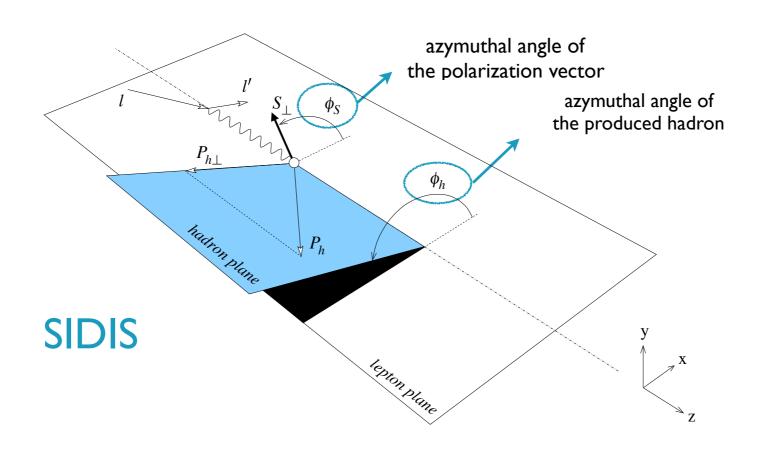
$$F_{UT,T}^{\sin(\phi_h - \phi_S)} = \mathscr{C} \left[ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}}{M} f_{1T}^{\perp} D_1 \right] \qquad F_{UU,T} = \mathscr{C} \left[ f_1 D_1 \right]$$

$$F_{UU,L}^{\sin(\phi_h - \phi_S)} = 0$$

written in terms of convolutions of TMDs

$$F_{UU,T} = \mathscr{C}\left[f_1 D_1\right]$$

$$F_{UU,L} = \mathcal{O}(M^2/Q^2, P_{hT}^2/Q^2) = 0$$

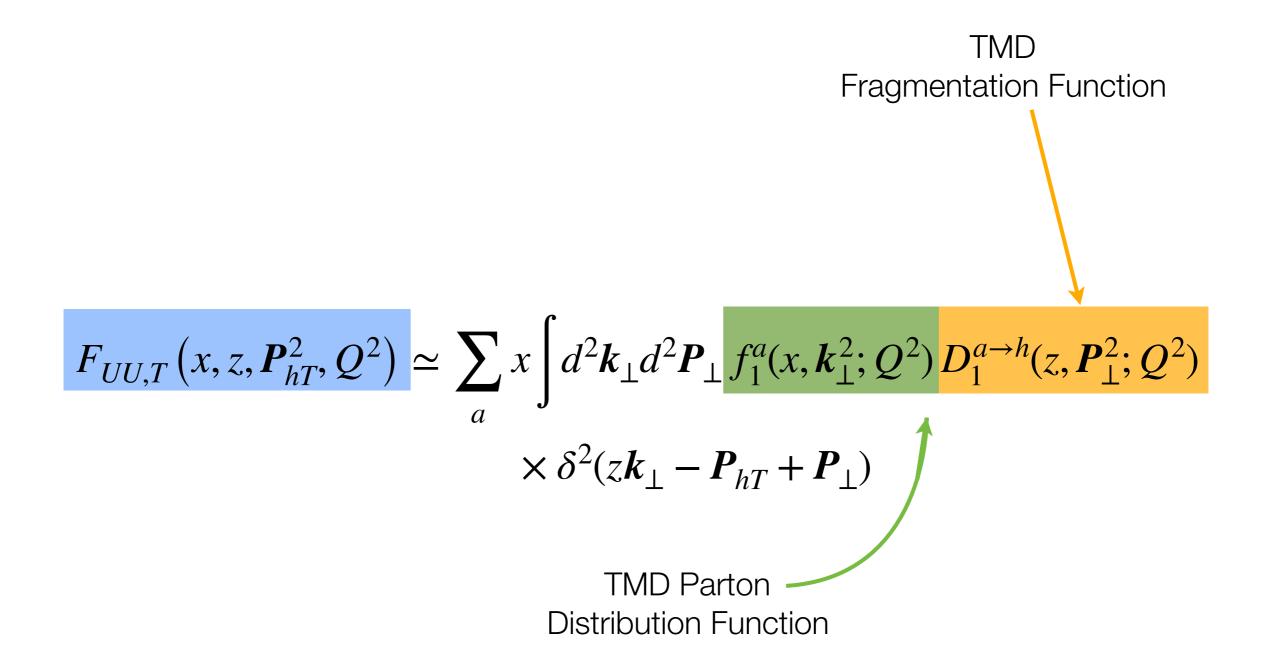


$$A_{UT}^{\sin(\phi_h - \phi_S)} \equiv \langle \sin(\phi_h - \phi_S) \rangle \sim \frac{f_{1T}^{\perp} \otimes D_1^{a \to h}}{f_1^a \otimes D_1^{a \to h}}$$

#### universality

first Sivers extraction with unpolarised TMDs extracted from data

#### TMDs in coordinate space



Parametrization defined through previous global fit

# Global fit of unpolarized TMDs

| Pavia 2017 | Framework | HERMES   | COMPASS  | DY       | production | N of points |
|------------|-----------|----------|----------|----------|------------|-------------|
| (+ JLab)   | LO-NLL    | <b>V</b> | <b>✓</b> | <b>V</b> | <b>/</b>   | 8059        |

published in [ JHEP06(2017)081 ]

#### Summary of results

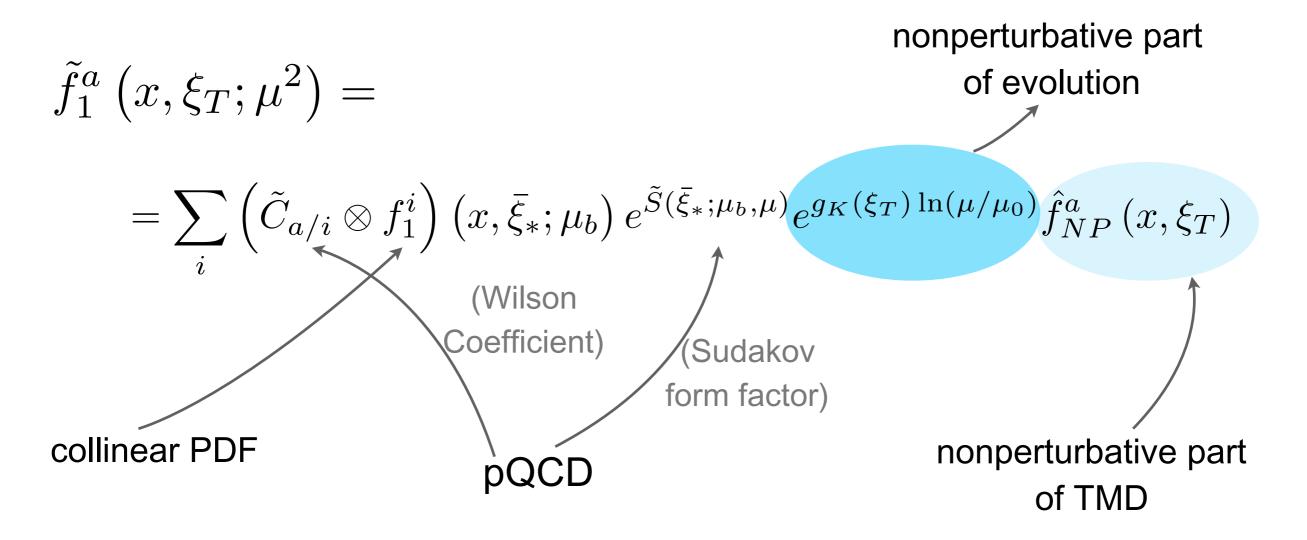
Total number of data points: 8059

Total number of free parameters: 11

$$\chi^2/d.of. = 1.55 \pm 0.05$$

# Fourier transform: ξ<sub>T</sub> space

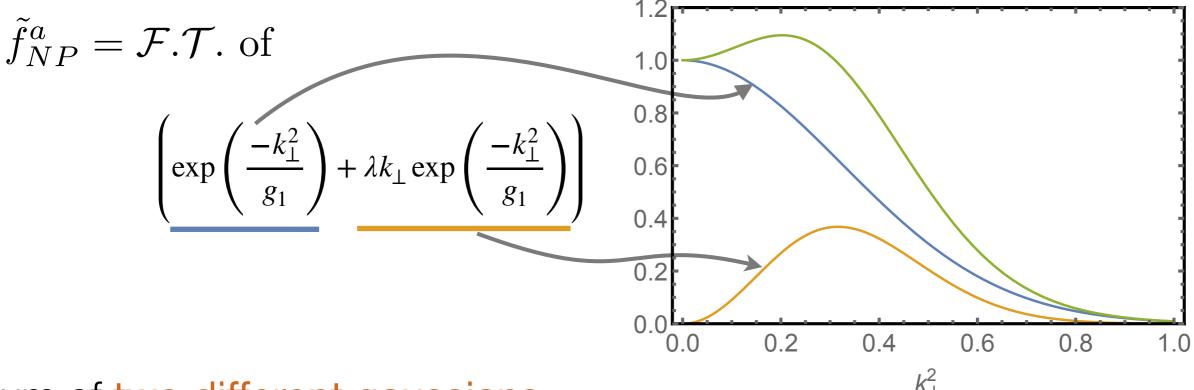
# alternative notation: $b_T$



Non-perturbative contributions have to be extracted from experimental data, after parametrization

# Model: non perturbative elements

#### input TMD PDF @ Q<sup>2</sup>=1GeV<sup>2</sup>



sum of two different gaussians dependent on transverse momenta

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}} \qquad \text{where} \qquad \begin{cases} N_1 \equiv g_1(\hat{x}) \\ \hat{x} = 0.1 \end{cases}$$

for the FF we use two different variances:

$$g_3(z), g_4(z)$$

# Sivers in coordinate space

$$\xi_T$$
 space

to apply

CSS formalism for evolution

#### Sivers distribution function

$$\tilde{f}_{1T}^{\perp(n)a}(x,\xi_T^2;Q^2) = n! \left( -\frac{-2}{M^2} \partial_{\xi_T^2} \right)^n \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2) = \frac{n!}{(M^2)^n} \int_0^\infty d|\mathbf{k}_\perp| |\mathbf{k}_\perp| \left( \frac{|\mathbf{k}_\perp|}{\xi_T} \right)^n J_n(\xi_T|\mathbf{k}_\perp|) \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2)$$

#### first moment

$$\tilde{f}_{1T}^{\perp(1)a}(x,\xi_T^2;Q^2) = \frac{1}{M^2} \int_0^\infty d|\mathbf{k}_{\perp}| |\mathbf{k}_{\perp}| \left(\frac{|\mathbf{k}_{\perp}|}{\xi_T}\right) J_1(\xi_T|\mathbf{k}_{\perp}|) \tilde{f}_{1T}^{\perp a}(x,\xi_T^2;Q^2)$$

#### Parametrization of Sivers function

Sivers function can be parametrized in terms of its first moment

$$f_{1T}^{\perp}(x, k_{\perp}^2) = f_{1T}^{\perp(1)}(x) f_{1TNP}^{\perp}(x, k_{\perp}^2)$$

Its nonperturbative part is arbitrary, but constrained by the positivity bound.

$$\underline{f_{1TNP}^{\perp}(x,k_{\perp}^{2})} = \frac{1}{\pi K_{f}} \frac{1}{F_{max}} \frac{(1+\lambda_{S}k_{\perp}^{2})}{(M_{1}^{2}+\lambda_{S}M_{1}^{4})} e^{-k_{\perp}^{2}/M_{1}^{2}} f_{1NP}(x,k_{\perp}^{2})$$

following the definition to the nonperturbative part of the unpolarized TMD distribution

$$f_{1NP}(x, k_{\perp}^{2}) = \frac{1}{\pi} \frac{(1 + \lambda k_{\perp}^{2})}{(g_{1a} + \lambda g_{1a}^{2})} e^{-k_{\perp}^{2}/g_{1a}}$$

Free parameters  $\lambda_S, M_1$ 

#### Parametrization of Sivers function

Sivers function can be parametrized in terms of its first moment

$$f_{1T}^{\perp}(x, k_{\perp}^2) = f_{1T}^{\perp(1)}(x) f_{1TNP}^{\perp}(x, k_{\perp}^2)$$

Its nonperturbative part is arbitrary, but constrained by the positivity bound.

$$f_{1TNP}^{\perp}(x, k_{\perp}^{2}) = \frac{1}{\pi K_{f}} \frac{1}{F_{max}} \frac{(1 + \lambda_{S} k_{\perp}^{2})}{(M_{1}^{2} + \lambda_{S} M_{1}^{4})} e^{-k_{\perp}^{2}/M_{1}^{2}} f_{1NP}(x, k_{\perp}^{2})$$
normalization factor  $K_{f} \equiv \int d^{2}k_{\perp} \frac{k_{\perp}^{2}}{2M^{2}} f_{1TNP}^{\perp}$ 

following the definition to the nonperturbative part of the unpolarized TMD distribution

$$f_{1NP}(x, k_{\perp}^{2}) = \frac{1}{\pi} \frac{(1 + \lambda k_{\perp}^{2})}{(g_{1a} + \lambda g_{1a}^{2})} e^{-k_{\perp}^{2}/g_{1a}}$$

#### Parametrization of Sivers function

$$f_{1T}^{\perp(1)}(x) = \frac{N_{Siv}^a}{G_{max}^a} x^{\alpha_a} (1-x)^{\beta_a} \Big(1 + A_a T_1(x) + B_a T_2(x)\Big) \ f_1(x,Q^2)$$
 maximum value of the function Radici [Phys. Rev. Lett., 120(19):192001, 2018]

Free parameters 
$$N_{Siv}^a$$
,  $\alpha_a$ ,  $\beta_a$ ,  $A_a$ ,  $B_a$ 

Flavor dependent: distinct for up, down, sea

#### **Evolution of Sivers**

We simply assume that  $f_{1T}^{\perp(1)}$  evolves in the same way as unpolarized  $f_1$ 

Difference in the Wilson coefficients:  $C^i \rightarrow C^{Siv}$ 

At our accuracy level (LO):  $C^{Siv(0)} = \delta(1-x)\delta^{ai}$ 

The evolved Sivers function first moment becomes

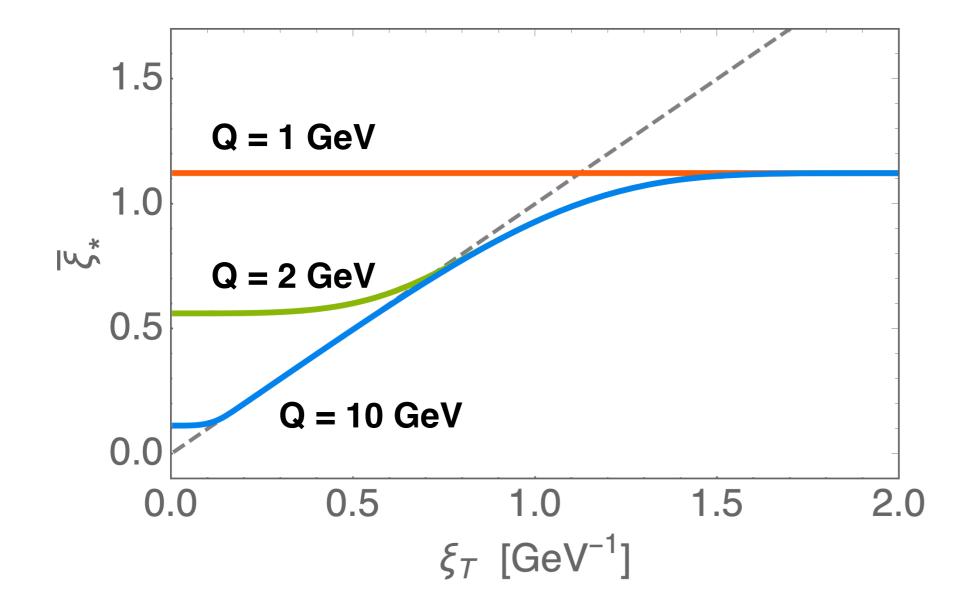
$$\tilde{f}_{1T}^{\perp(1)a}(x,\xi_T^2;Q^2) = f_1^a(x;\mu_b^2) \ e^{S(\mu_b^2,Q^2)} \ e^{g_K(\xi_T)\ln(Q^2/Q_0^2)} \ \tilde{f}_{1T\mathrm{NP}}^{\perp(1)a}(x,\xi_T^2)$$

same choices used for evolved unpolarized TMDs

# Evolution and $\xi_T$ regions

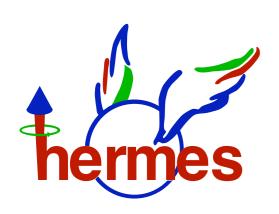
$$\mu_b = 2e^{-\gamma_E}/\bar{\xi}_*$$

$$\bar{\xi}_* (\xi_T, \xi_{min}, \xi_{max}) = \xi_{max} \left[ \frac{1 - \exp(\xi_T^4/\xi_{max}^4)}{1 - \exp(\xi_T^4/\xi_{min}^4)} \right]^{1/4}$$



$$\xi_{max} = 2e^{-\gamma_E}$$
$$\xi_{min} = 2e^{-\gamma_E}/Q$$

# Experimental data



proton [H]

95 data points



neutron [3He]

6 data points



deuteron [6LiD]

88 data points



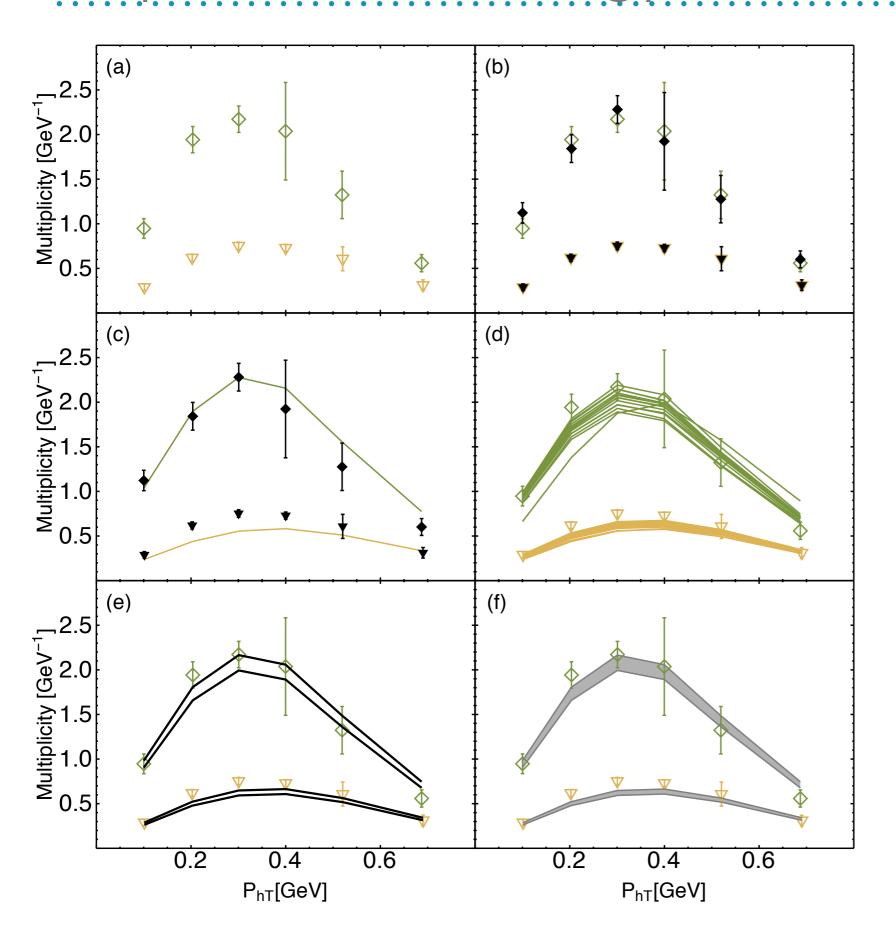
Proton [NH<sub>3</sub>]

111 data points

Same kinematic cuts applied to unpolarized

x, z, P<sub>hT</sub> data projections

# Replica Methodology



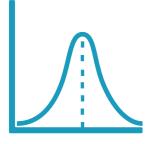
- a)Example of original data (two bins)
- b)Data are replicated with Gaussian noise
- c) The fit is performed on the replicated data
- d)The procedure is repeated 200 times
- e)For each point a 68% confidence level is identified
- f) These point connects to create a 68% C.L. band

LO - NLL Replica method

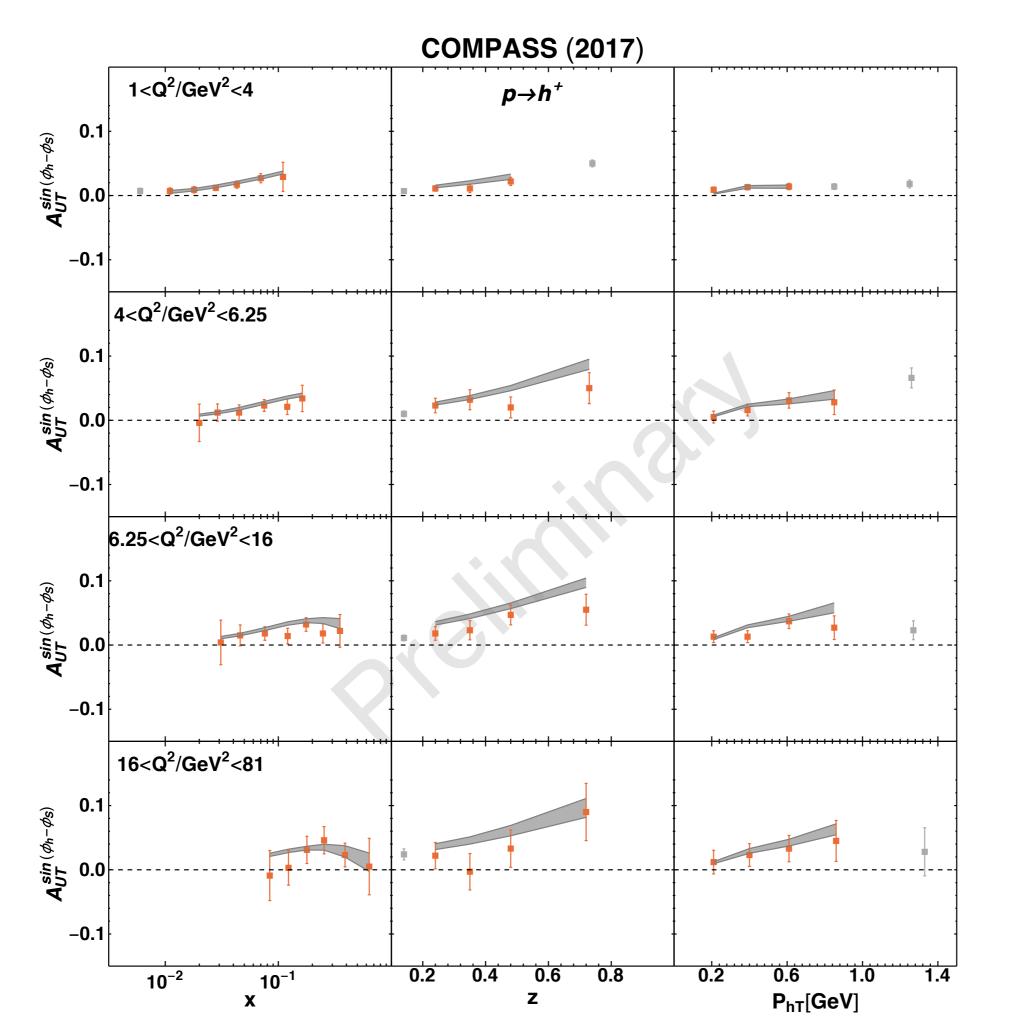
#### Summary of results

Total number of data points: 118

Total number of free parameters: 14 → for 3 different flavors

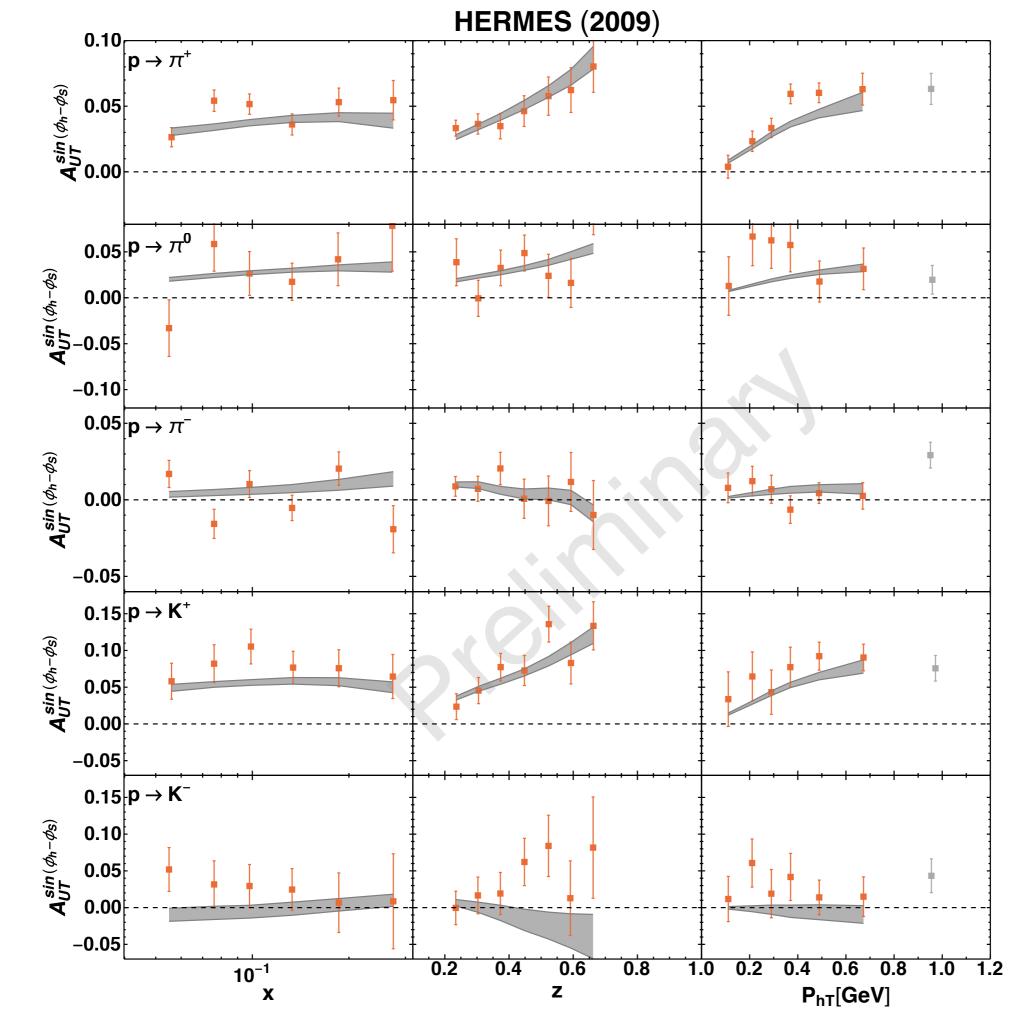


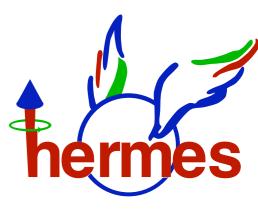
$$\chi^2/d.o.f = 1.22 \pm 0.20$$





proton positive hadron

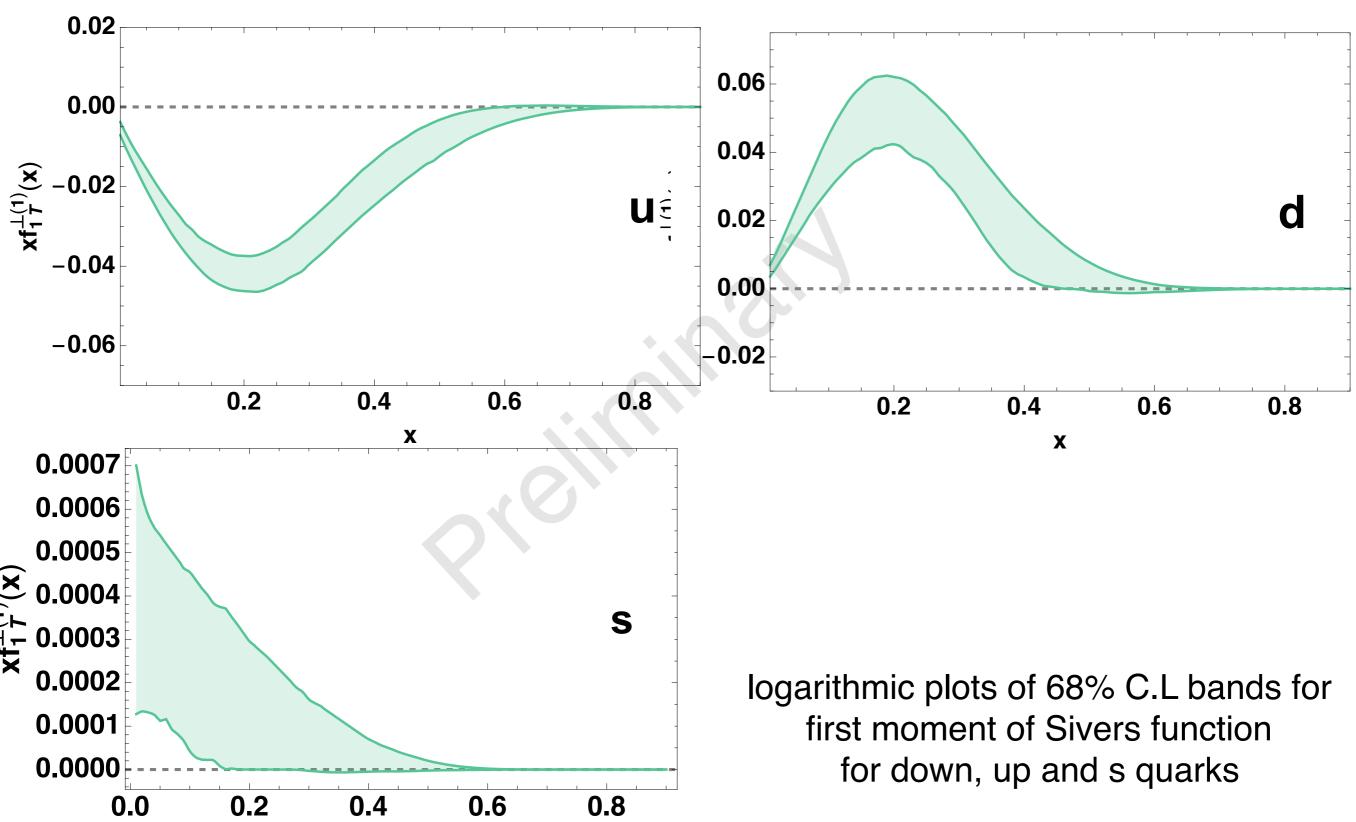




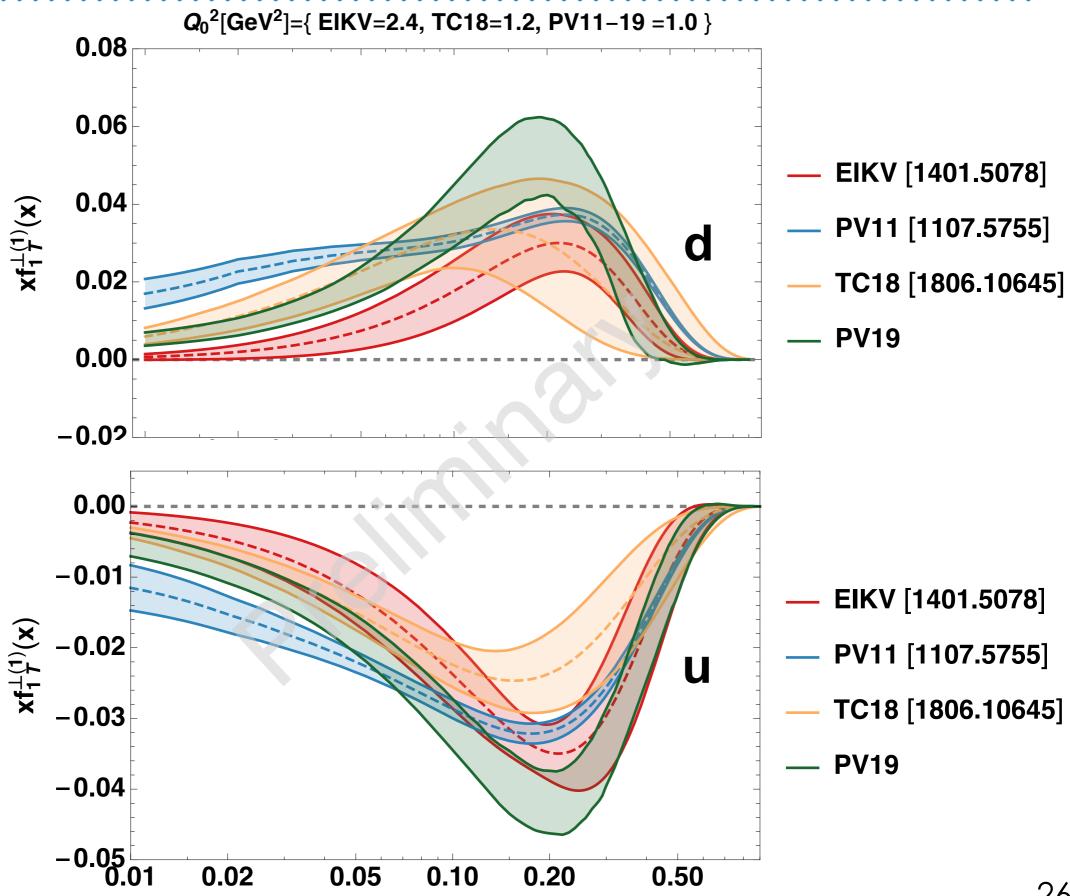
proton

#### Sivers function first moment

X

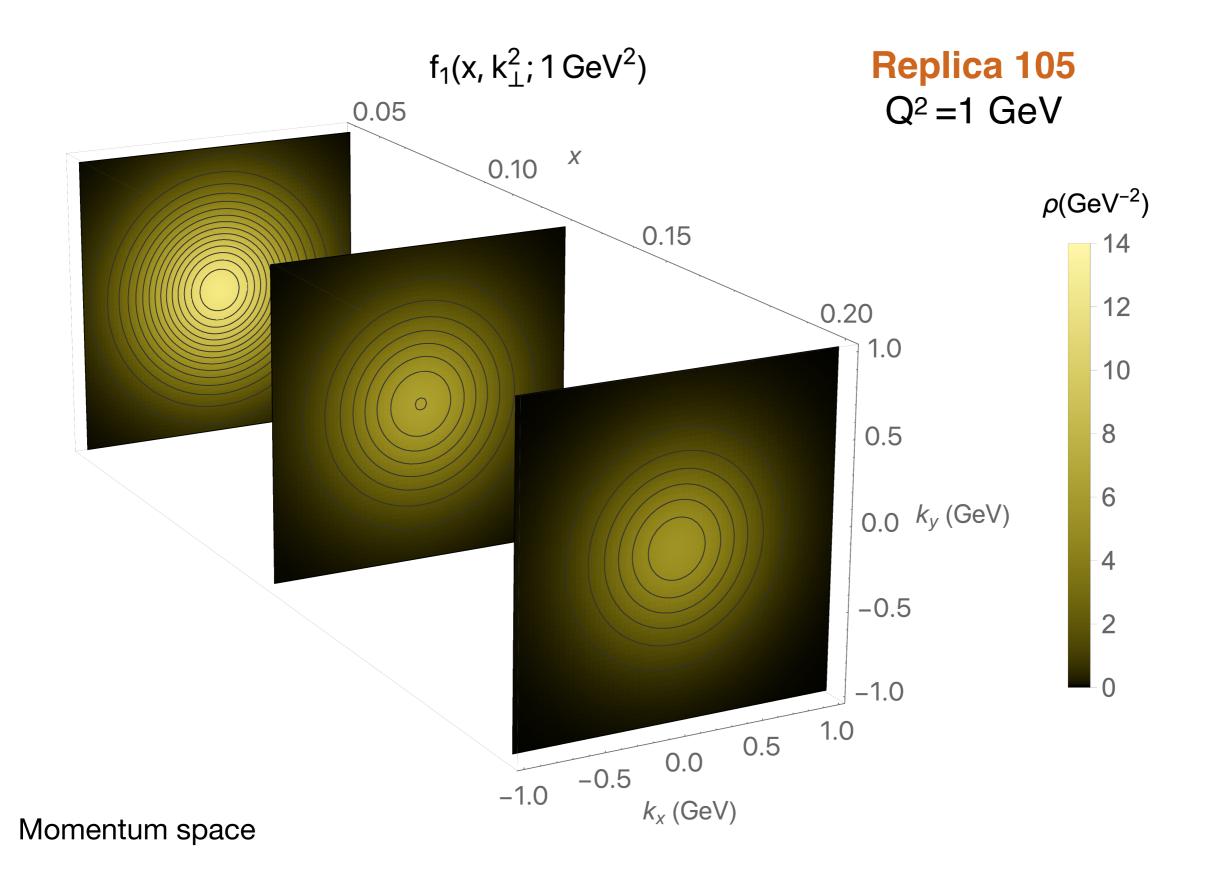


# Results comparison

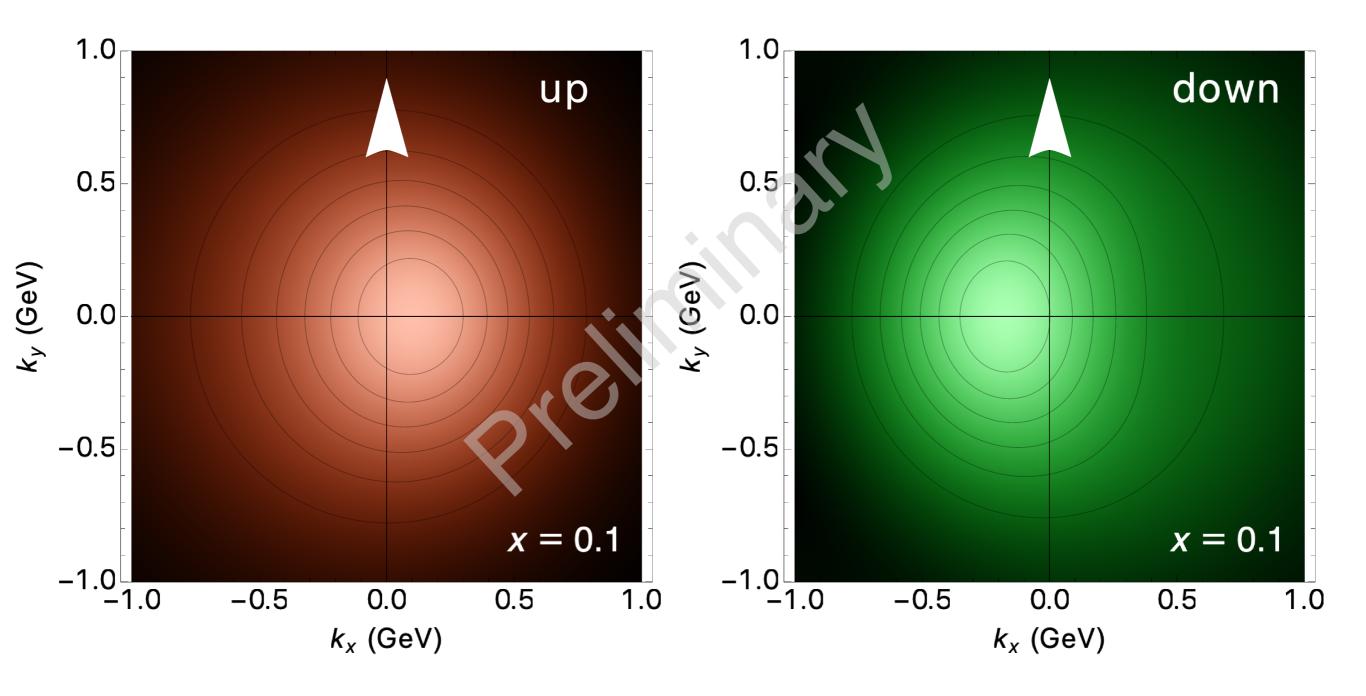


X

# Visualization of TMDs: PDF 3D structure



#### Visualization of TMDs: structure deformation



$$xf_1(x, k_\perp^2; Q^2) - xf_{1T}^\perp(x, k_\perp^2; Q^2)$$

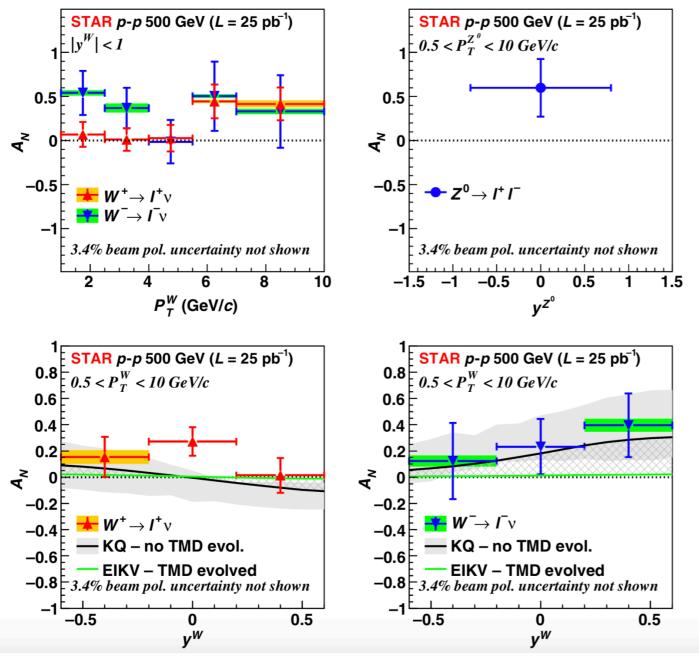
#### Conclusions

We extracted a functional form for Sivers distribution function, able to describe SIDIS data, even for different projections

For the first time the determination of A<sub>UT</sub> included unpolarized TMDs extracted directly from data. Moreover, the analysis included the full formalism for QCD evolution

We are able to observe a deformation of the internal nucleon structure using our parametrization.

#### Future outlooks: Sivers





Predictions of A<sub>N</sub> asymmetries for W/Z production

# **Anomalous magnetic moment** (testing Pavia2011 hypothesis)

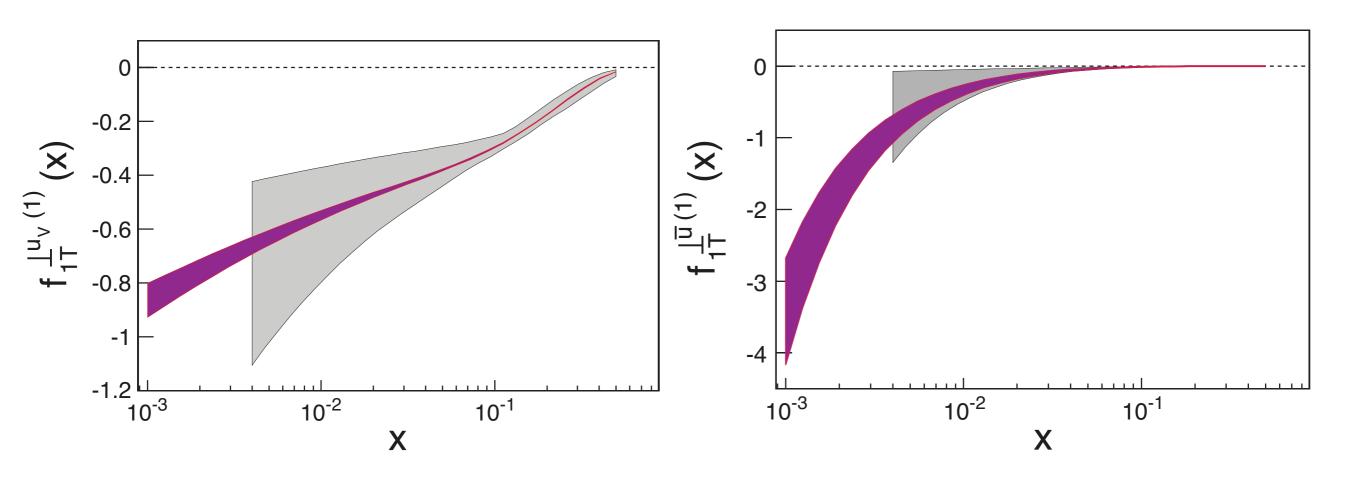
$$J^{a}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dx x [H^{a}(x, 0, 0; Q^{2}) + E^{a}(x, 0, 0; Q^{2})].$$

#### Higher accuracy

(after unpol. TMD improved fit )

# Long term outlooks

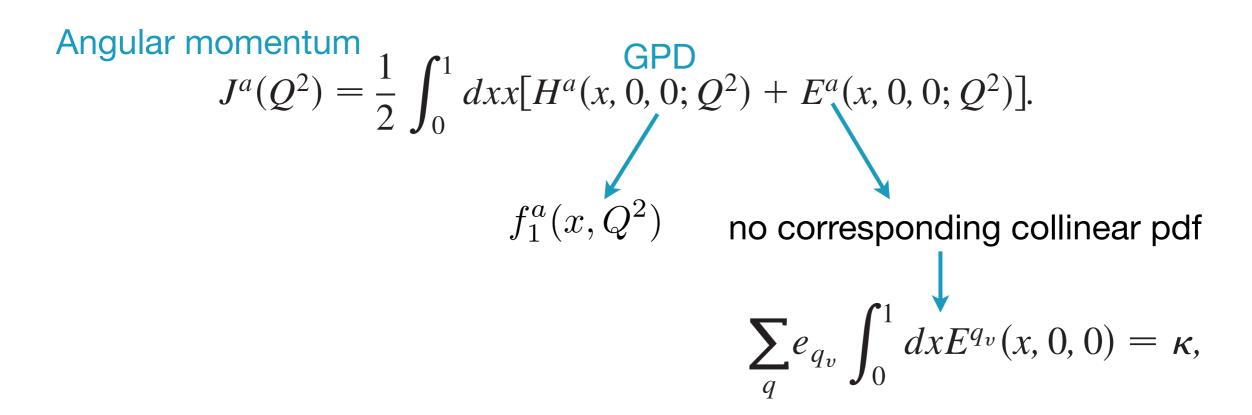
Current knowledge of Sivers function (both valence and sea quarks) can be greatly improved thanks to the high luminosity measurements at EIC



```
BackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupBackupB
```

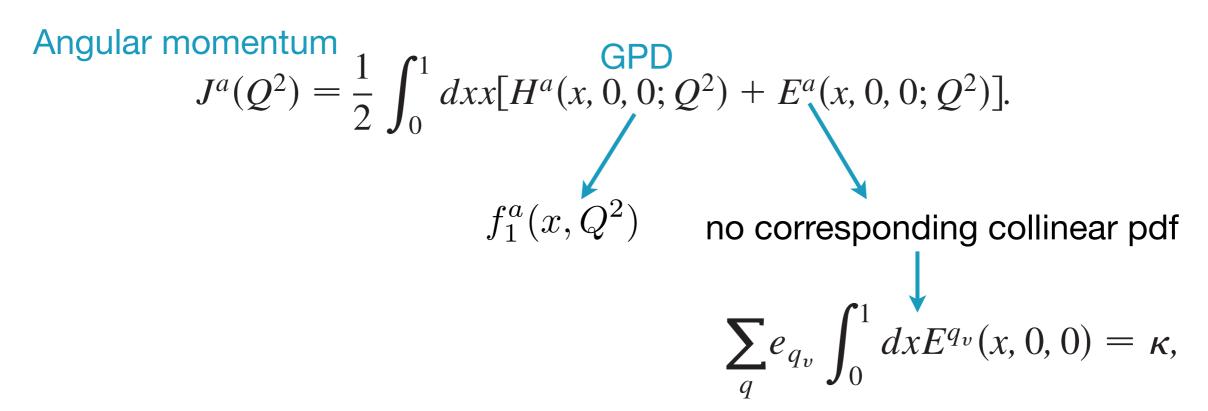
#### Results comparison: Pavia 2011

#### Constraining Quark Angular Momentum through Semi-Inclusive Measurements



#### Results comparison: Pavia 2011

#### Constraining Quark Angular Momentum through Semi-Inclusive Measurements



..from theoretical consideration and spectator model results:

$$\rightarrow f_{1T}^{\perp(0)a}(x;Q_L^2) = -L(x)E^a(x,0,0;Q_L^2),$$

Lensing function

$$L(x) = \frac{K}{(1-x)^{\eta}}$$

# Results comparison: Pavia 2011

#### Azimuthal asymmetries

$$A_{UT}^{\sin(\phi_{h}-\phi_{S})}(x,z,P_{T}^{2},Q^{2})$$

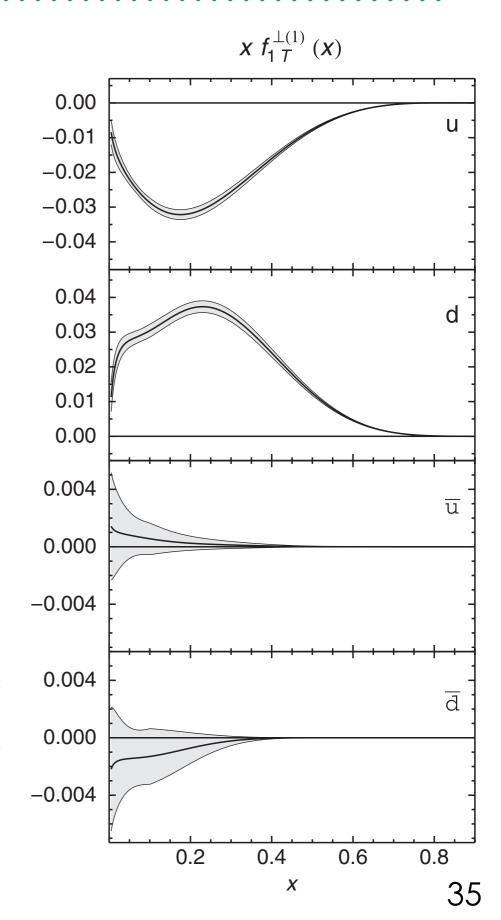
$$= -\frac{M_{1}^{2}(M_{1}^{2} + \langle k_{\perp}^{2} \rangle)}{\langle P_{\text{Siv}}^{2} \rangle^{2}} \frac{zP_{T}}{M} \left(z^{2} + \frac{\langle P_{\perp}^{2} \rangle}{\langle k_{\perp}^{2} \rangle}\right)^{3} e^{-z^{2}P_{T}^{2}/\langle P_{\text{Siv}}^{2} \rangle}$$

$$\times \frac{\sum_{a} e_{a}^{2} f_{1T}^{\perp(0)a}(x;Q^{2}) D_{1}^{a}(z;Q^{2})}{\sum_{a} e_{a}^{2} f_{1}^{a}(x;Q^{2}) D_{1}^{a}(z;Q^{2})},$$

#### Hermes, Compass, Jlab data

TABLE I. Best-fit values of the 8 free parameters for the case  $C^{s_v} = C^{\bar{s}} = 0$ . The final  $\chi^2/\text{d.o.f.}$  is 1.323. The errors are statistical and correspond to  $\Delta \chi^2 = 1$ 

| $-0.229 \pm 0.002$                   | $C^{d_v} \\ 1.591 \pm 0.009$ | $C^{\bar{u}}$ 0.054 ± 0.107 | $C^{\bar{d}} -0.083 \pm 0.122$ |
|--------------------------------------|------------------------------|-----------------------------|--------------------------------|
| $M_1 \text{ (GeV)}$<br>0.346 ± 0.015 | K (GeV)<br>1.888 ± 0.009     | $\eta$ 0.392 ± 0.040        | $\alpha^{u_v}$ 0.783 ± 0.001   |

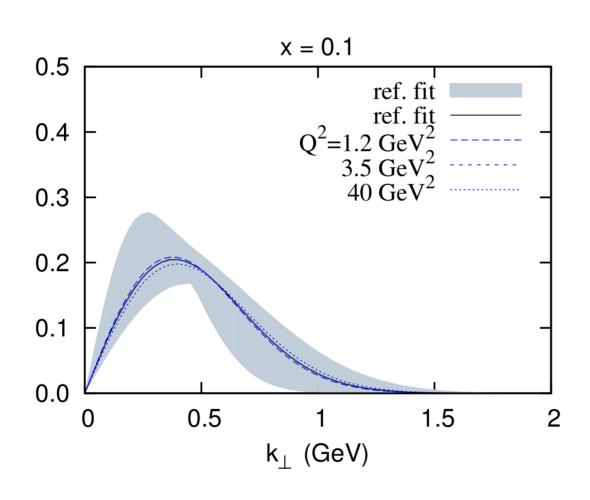


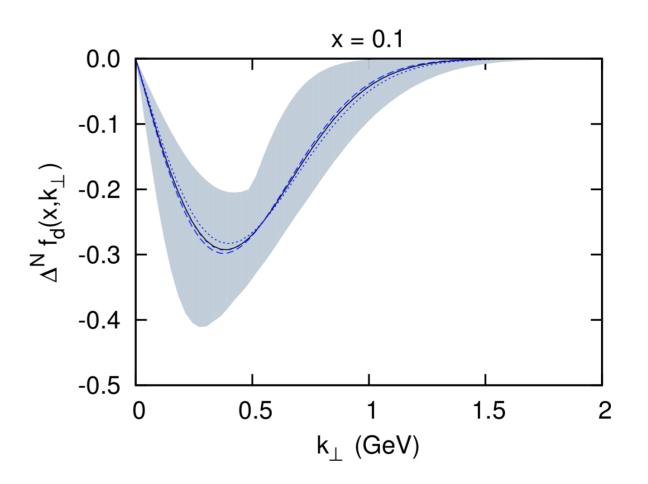
# Results comparison: TO - CA group

Same selection of data, considering all projections

$$A_{UT}^{sin(\phi_h - \phi_S)}$$

3 cases for evolution: no evolution, collinear twist-3, TMD-like evolution





 $\chi^2/dof \sim 0.94$ 

## Results comparison: EIKV

Global fit of the HERMES, COMPASS and JLab experimental data on polarized reactions to extract the Sivers functions.

- →Hermes, Compass, Jlab data
- →using CSS evolution
- →relating the first moment of the Sivers function to the twist-three Qiu-Sterman quark-gluon correlation function

$$f_{1T,\text{SIDIS}}^{\perp q(\alpha)}(x,b;Q) = \left(\frac{ib^{\alpha}}{2}\right)T_{q,F}(x,x,c/b_*) \exp\left\{-\int_{c/b_*}^{Q} \frac{d\mu}{\mu} \left(A \ln \frac{Q^2}{\mu^2} + B\right)\right\}$$

$$\times \exp\left\{-b^2\left(g_1^{\text{sivers}} + \frac{g_2}{2} \ln \frac{Q}{Q_0}\right)\right\}$$

$$T_{q,F}(x, x, \mu) = N_q \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta^q}} x^{\alpha_q} (1 - x)^{\beta_q} f_{q/A}(x, \mu)$$

# Results comparison: EIKV

 $T_{qF}(x,x,\mu)$   $\rightarrow$  "collinear counterpart" of the Sivers function

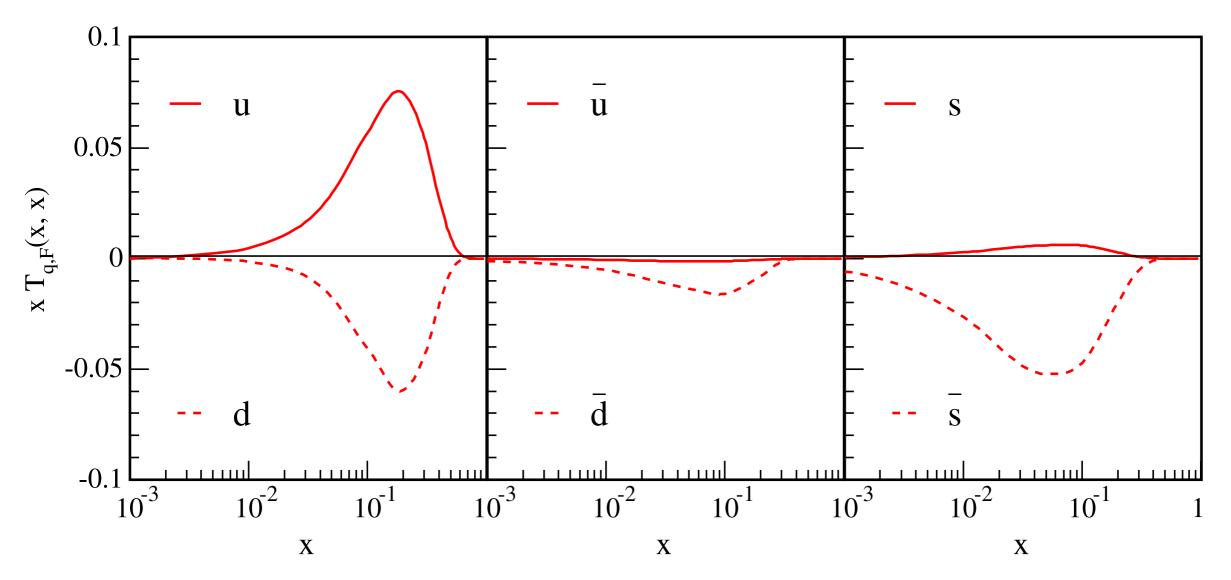


FIG. 11 (color online). Qiu-Sterman function  $T_{q,F}(x,x,Q)$  for u,d and s flavors at a scale  $Q^2=2.4~{\rm GeV^2}$ , as extracted by our simultaneous fit of JLab, HERMES and COMPASS data.