NUCLEAR FEMTOGRAPHY AS A BRIDGE FROM THE NUCLEON TO NEUTRON STARS

QCD EVOLUTION 2019 ARGONNE NATIONAL LAB, MAY 13-17, 2019

Simonetta Liuti University of Virginia

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018)

"The average peak pressure near the center is about 10³⁵ pascals, which exceeds the pressure estimated for the most densely packed known objects in the Universe, neutron stars"

How is the pressure radial distribution extracted from data? (How does the proton/neutron get its mass and spin?)

$$\mathcal{L}_{QCD} = \overline{\psi} \left(i \gamma_{\mu} D^{\mu} - m \right) \psi - \frac{1}{4} F_{a,\mu\nu} F_{a}^{\mu\nu}$$

Invariance of \mathcal{L}_{QCD} under translations and rotations

Energy Momentum Tensor

from translation inv.

$$T_{QCD}^{\mu\nu} = \frac{1}{4} \,\overline{\psi} \,\gamma^{(\mu} D^{\nu)} \psi + Tr \left\{ F^{\mu\alpha} F^{\nu}_{\alpha} - \frac{1}{2} g^{\mu\nu} F^2 \right\}$$

Angular Momentum Tensor

from rotation inv.

$$M_{QCD}^{\mu\nu\lambda} = x^{\nu}T_{QCD}^{\mu\lambda} - x^{\lambda}T_{QCD}^{\mu\nu}$$

Parametrization of QCD EMT matrix element between proton states (X. Ji, 1997)

$$P = \frac{p+p}{2}$$
$$\Delta = p'-p = q-q'$$
$$t = (p-p')^2 = \Delta^2$$

Direct calculation of EMT form factors Donoghue et al. PLB529 (2002)

Figure 2: Feynman diagrams for spin 1/2 radiative corrections to $T_{\mu\nu}$.

GPDs and EMT matrix elements

 $Q^2 >> M^2 \rightarrow$ "deep" $W^2 >> M^2 \rightarrow$ equivalent to an "inelastic" process but not directly accessible

2nd Mellin moments

Nucleon

$$\int dxxH(x,\xi,t) = \begin{bmatrix} A_{20}(t) + \xi^2 C_{20}(t) \\ A_{20}(t) + \xi^2 C_{20}(t) \end{bmatrix} = \begin{bmatrix} A(t) + \xi^2 C(t) \\ A(t) + \xi^2 C(t) \end{bmatrix}$$
D-term

$$\int dxxE(x,\xi,t) = \begin{bmatrix} B_{20}(t) - \xi^2 C_{20}(t) \\ B(t) - \xi^2 C(t) \end{bmatrix}$$

Physical interpretation of EMT form factors

$$\frac{1}{2}\left(A_{q}+B_{q}\right) = J_{q} = \frac{1}{2}\left(A_{20}+B_{20}\right) \Rightarrow J_{q}^{i} = \int d^{3}r \epsilon^{ijk} r_{j}T_{0k}$$

$$A_q = \langle x_q \rangle = A_{20}$$

$$C_q = \text{Internal Forces} = C_{20} \Rightarrow \int d^3r \left(r^i r^j - \delta^{ij} r^2\right) T_{ij}$$

C (D-term) is related to pressure

Static approximation

$$T_{ij} = \left(\frac{r_i r_j}{r^2} - \frac{1}{3}\delta_{ij}\right)s(r) + \delta_{ij}p(r)$$

Landau&Lifshitz, Vol.7 M. Polyakov, hep-ph/0210165 M. Polyakov, P. Schweitzer, arXiv:1805.06596

C is a measure of the Elastic Free Energy in the proton

Energy Momentum Tensor in a spin 1 system

Angular momentum sum rule for spin one hadronic systems

Swadhin K. Taneja,^{1,*} Kunal Kathuria,^{2,†} Simonetta Liuti,^{2,‡} and Gary R. Content Rein^{3,§} PRD86(2012)

2012) $\langle p', \Lambda' \mathbf{1} | p, \Lambda \rangle = -\frac{1}{2} P^{\mu} P^{\nu} (\epsilon'^{*} \epsilon) \mathcal{G}_{1}(t) - \frac{1}{4} P^{\mu} P^{\nu} \frac{(\epsilon P)(\epsilon'^{*} P)}{M^{2}} \mathcal{G}_{2}(t)$ $-\frac{1}{2} \left[\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2} \right] (\epsilon'^{*} \epsilon) \mathcal{G}_{3}(t) - \frac{1}{4} \left[\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2} \right] \frac{(\epsilon P)(\epsilon'^{*} P)}{M^{2}} \mathcal{G}_{4}(t)$ S=1 $+\frac{1}{4}\left[\left(\epsilon'^{*\mu}(\epsilon P)+\epsilon^{\mu}(\epsilon'^{*}P)\right)P^{\nu}+\mu\leftrightarrow\nu\right]\mathcal{G}_{5}(t)$ $+\frac{1}{4}\left[\left(\epsilon'^{*\mu}(\epsilon P)-\epsilon^{\mu}(\epsilon'^{*}P)\right)\Delta^{\nu}+\mu\leftrightarrow\nu+2g_{\mu\nu}(\epsilon P)(\epsilon'^{*}P)-\left(\epsilon'^{*\mu}\epsilon^{\nu}+\epsilon'^{*\nu}\epsilon^{\mu}\right)\Delta^{2}\right]\mathcal{G}_{6}(t)$ $+\frac{1}{2}\left[\epsilon^{*\prime\mu}\epsilon^{\nu}+\epsilon^{\prime*\nu}\epsilon^{\mu}\right]\mathcal{G}_{7}(t)+g^{\mu\nu}(\epsilon^{\prime*}\epsilon)M^{2}\mathcal{G}_{8}(t)$

General rule to count form factors: t-channel J^{PC} q. numbers

TABLE III: J^{PC} of the vector operators with (S; L, L') for the corresponding $N\bar{N}$ state. Where there are no (S; L, L') values there are no matching quantum numbers for the $N\bar{N}$ system.

5/16/19

12

Connecting with observables: work in progress with Brandon Kriesten and Adam Freese

GPDs are the key to interpret the mechanical properties of the proton

action

EMT and the source of the gravitational field

 $S = \int \sqrt{-g} \left[\frac{1}{16\pi G} \mathcal{R} - \mathcal{L}_m \right] d^4x$ Ricci scalar \rightarrow curvature Flat space Matter and energy in the universe $\longrightarrow T_{\mu\nu} = \frac{\delta \mathcal{L}_m}{\delta a^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_m$

Spacetime geometry

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$
Ricci tensor

Einstein's Eqs. $\implies G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Using the metric, $g_{\mu\nu}$, one can calculate:

- the curvature tensor R_{uv}
- the Einstein tensor G_{µv}
- the stress energy tensor for a perfect fluid $T_{\mu\nu} = (p+\epsilon)u_{\mu}u_{\nu} + pg_{\mu\nu}$

Knowing the EoS

EoS $p(r)-\varepsilon(r)$ relation

One can solve TOV to find the mass radius relation

Constraints from Pulsar Masses

J. Antoniadis et al., Science 340, 6131 (2013) P. B. Demorest et al., Nature 467 (2010)

Constraints require the EoS to be stiff \rightarrow consistent with predictions for ordinary nuclear matter composed of mostly neutrons and few protons including three body interactions

What governs the EoS of neutron stars?

Due to their extreme compactness, the central density of neutron stars exceeds the nuclear saturation density, $\rho_0 = 0.16 \text{ fm}^{-3}$

Most observed neutron star masses are > $1.3M_{\odot}$

Gravitational collapse is countered by pressure originating from nuclear forces

TOV equations inject the mechanical/ **microscopic** properties of NS matter into the stars **macroscopic** properties

"...the existence of quark-matter cores inside very massive NSs should be considered the standard scenario, not an exotic alternative. QM is altogether absent in NS cores only under very specific conditions,..." 19

- We propose a new, model independent way of evaluating the EoS in the quark matter phase by inferring it directly from the matrix elements of the QCD Energy Momentum Tensor (EMT) between nucleon states.
- Model independent means relating measurement to measurement
- The ingredients of our calculation are GPDs
- This allows us to introduce spatial coordinates/distance in the picture in a novel way

Densities and distance scales

$$\approx k_F^3 \int d^2\beta \, q_N(\mid \vec{b} - \vec{\beta} \mid), \qquad \vec{\beta} = \vec{b} - \vec{b}'$$

b-b

ALERT Proposal at Jefferson Lab: Nuclear Exclusive and Semi-inclusive Measurements with A New CLAS12 Low Energy Recoil Tracker W. Armstrong et al.

 $\langle p' \mid T^{\mu\nu} \mid p \rangle = 2 \left[A(t) P^{\mu} P^{\nu} + C(t) (\Delta^2 g^{\mu\nu} - \Delta^{\mu} \Delta^{\nu}) \right] + \widetilde{C}(t) g^{\mu\nu}$

Nucleon Gravitomagnetic Form Factors

Jlab Hall B, Burkert Elouadrhiri, Girod, Nature (2018)

Gluons

-t (GeV²)

Detmold, Shanahan, Phys.Rev. D99 (2019)

Z

5/16/19

We can map out faithfully the spatial quark distributions in the transverse plane (no modeling/approximation)

$$q(x,\vec{b}) = \frac{dn}{dxd^2\vec{b}}$$

Soper (1977), Burkardt (2001)

Already a surprise: re-evaluation of nucleon charge distribution

Including all polarization configurations:

$$\rho_{\Lambda\lambda}^{q}(\mathbf{b}) = H_{q}(\mathbf{b}^{2}) + \frac{b^{i}}{M} \epsilon_{ij} S_{T}^{j} \frac{\partial}{\partial b} E_{q}(\mathbf{b}^{2}) + \Lambda\lambda \widetilde{H}_{q}(\mathbf{b}^{2}),$$

1st Mellin M.
$$H_q(\mathbf{b}^2) = \int \frac{d^2 \mathbf{\Delta}_T}{(2\pi)^2} e^{i \mathbf{\Delta}_T \cdot \mathbf{b}} A_1^q(t)$$
, number/mass density

$$\begin{array}{l} \begin{array}{c} \mathbf{2^{nd} \ Mellin \ M.} \\ \epsilon_{q,g}(r) = \int \frac{d^2 \mathbf{\Delta}_T}{(2\pi)^2} e^{i \mathbf{\Delta}_T \cdot \mathbf{b}} A_2^{q,g}(t) \end{array} \begin{array}{c} \begin{array}{c} \text{Energy} \\ \text{density} \end{array} \\ \mathbf{p}_{q,g}(r) = \int \frac{d^2 \mathbf{\Delta}_T}{(2\pi)^2} e^{i \mathbf{\Delta}_T \cdot \mathbf{b}} 2 t C_2^{q,g}(t) \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Energy} \\ \text{density} \end{array} \end{array}$$

From transverse distance to z₃ using Lorentz invariance Radyushkin and Orginos, arXiv:1706.05373

SL, Rajan, Yagi, arXiv:1812.01479

33

"stitching" at transition pressure 0.15 GeV/fm³

SL, Rajan, Yagi, arXiv:1812.01479

Jefferson Lab's measurement on the pressure inside the nucleon/hadronic matter needs to be corroborated by an independent set of measurements

Neutron stars mergers/multimessenger astronomy provide an independent constraint

WHAT'S NEXT...

Key question: how to extract accurate information on the mechanical properties of the nucleon from data

New formalism for deeply virtual exclusive processes

 No harmonics, please.....this is just a coincidence experiment (write the cross section a la Donnelly...)
 This formalism has not been developed in previous work for GPDs

Conclusions and Outlook

- The EoS of dense matter in QCD can be obtained from first principles, using **ab initio calculations for both quark and gluon d.o.f.**
- **Gluons** are found to dominate the EoS providing a trend in the high density regime which is consistent with the constraint from LIGO.

- We can connect the **pressure and energy density** in neutron stars with collider observables: the **GPDs**.
- The proposed line of research opens up a new framework for understanding the properties of **hybrid stars**. In the future we hope to set more stringent constraints on the nature of the **hadron to quark matter transition** at zero temperature.

... To observe, evaluate and interpret

Wigner distributions at the subatomic level

requires stepping up data analyses from the standard methods → developing new numerical/analytic/quantum computing methods

Center for Nuclear Femtography at Jefferson Lab

After the

Virginia Symposium on Imaging and Visualization in Science

from Sunday, 9 December 2018 at 08:00 to Tuesday, 11 December 2018 at 18:00 (America/New_York)

9 University of Virginia

Symposium on Imaging and Visualization in Science

December 10-11, 2018, University of Virginia

Summer Institute on Wigner Imaging and Femtography, SIWIF@UVA: May-August 2019

Organizers P. Alonzi, M. Burkardt, D. Keller, S. Liuti, O. Pfister, P. Reinke