Quasi TMDPDFs and Collins-Soper Kernel from Lattice QCD

Markus Ebert

Massachusetts Institute of Technology

[ME, Stewart, Zhao; 1811.00026] [ME, Stewart, Zhao; 1901.03685]

Unterstützt von / Supported by

and a

Alexander von Humboldt Stiftung/Foundation QCD Evolution 2019 05/15/2019

05/15/2019 0 / 18

Outline

Review of TMD factorization

05/15/2019 0 / 18

Review of TMD factorization

• TMD factorization (e.g. for Drell-Yan, $pp \rightarrow Z/\gamma^* \rightarrow l^+l^-$): [Collins, Soper, Sterman '85; Becher, Neubert '10; Collins '11; Echevarria, Idilbi, Scimemi '11; Chiu, Jain, Neill, Rothstein '12]

 $\frac{\mathrm{d}\sigma}{\mathrm{d}^2 \vec{q}_T} = H(Q) \int \mathrm{d}^2 \vec{b}_T \, e^{\mathrm{i} \vec{q}_T \cdot \vec{b}_T} \, f_n^{\mathrm{TMD}}(x_1, \vec{b}_T) \, f_{\bar{n}}^{\mathrm{TMD}}(x_2, \vec{b}_T) \big[1 + \mathcal{O}(q_T^2/Q^2) \big]$

• On closer look: $f_n^{\text{TMD}} = B_n \sqrt{S}$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}^2 \vec{q}_T} = H(Q) \int \mathrm{d}^2 \vec{b}_T \, e^{\mathrm{i} \vec{b}_T \cdot \vec{q}_T} B_n(x_1, \vec{b}_T) B_{\bar{n}}(x_2, \vec{b}_T) S(b_T) \big[1 + \mathcal{O}(q_T^2/Q^2) \big]$

- Hard function H: underlying hard process $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+ l^-$
- Beam functions B_{n,n}: collinear radiation
 - Factorize into n and n functions
- Soft function S: soft radiation
 - Depends on both n and \bar{n}
 - Universal: same soft function for DIS

Definitions of TMDPDFs

• TMDPDF defined with soft subtraction:

 $f_n^{ ext{TMD}}(x,ec{b}_T,\mu,\zeta) = \lim_{\substack{\epsilon o 0 \ au o 0}} Z_{ ext{uv}}(\epsilon,\mu,\zeta) B_n(x,ec{b}_T,\epsilon, au) S(b_T,\epsilon, au)$

- ϵ : UV regulator \rightarrow scale μ
- au: rapidity regulator o Collins-Soper scale ζ
- $$\begin{split} \int_{q_T}^{Q} \frac{\mathrm{d}k^+}{k^+} &= \int_0^Q \frac{\mathrm{d}k^+}{k^+} R(k^+,\tau,\nu) + \int_{q_T}^\infty \frac{\mathrm{d}k^+}{k^+} R(k^+,\tau,\nu) \\ &= \left(-\frac{1}{\tau} + \ln\frac{Q}{\nu}\right) + \left(\frac{1}{\tau} + \ln\frac{\nu}{q_T}\right) = \ln\frac{Q}{q_T} \end{split}$$
- Many definitions / schemes in the literature:
 - Wilson lines off light cone [Collins '11]
 - ► Δ regulator [Echevarria, Idilbi, Scimemi '11]
 - Analytic regulator [Becher, Bell '12]
 - η regulator [Chiu, Jain, Neill, Rothstein '12]
 - Exponential regulator [Li, Neill, Zhu '16]
- but TMDPDF is scheme independent
 - B_n and S not meaningful alone
 - Must determine f^{TMD} on lattice

Definitions of TMDPDFs

• TMDPDF defined with soft subtraction:

$$egin{array}{l} n=(1,0,0,1)\ b^{\pm}=b^{0}\mp b^{z} \end{array}$$

$$f_n^{\mathrm{TMD}}(x,\vec{b}_T,\mu,\zeta) = \lim_{\substack{\epsilon \to 0 \\ \tau \to 0}} Z_{\mathrm{uv}}(\epsilon,\mu,\zeta) B_n(x,\vec{b}_T,\epsilon,\tau) S(b_T,\epsilon,\tau)$$

• Beam function definition: $B_n(x, \vec{b}_T, \epsilon, \tau) = \int \frac{db^+}{4\pi} e^{-\frac{i}{2}b^+(xP_n^-)} B_n(b^+, \vec{b}_T, \epsilon, \tau)$

$$B_n(b^+,ec{b}_T,\epsilon, au) = \langle P(P_n) ig| ar{q}(b^+,ec{b}_T) W^{(0,ec{0}_T)}_{(b^+,ec{b}_T)} rac{\gamma}{2} q(0) ig| P(P_n)
angle_{ au}$$

Soft function definition:

 $S(b_T,\epsilon, au) = \langle 0 ig| [S_{ar{n}}^{\dagger}S_n] (ec{b}_T) S_{ot,-\infty n}^{(0,ec{b}_T)} [S_n^{\dagger}S_{ar{n}}] (ec{0}_T) S_{ot,-\infty ar{n}}^{(0,ec{b}_T)} ig| 0
angle_{ au}$

• Wilson line paths:

Beam function

Soft function

TMD evolution equations

• Renormalization scale dependence:

$$\mu rac{\mathrm{d}}{\mathrm{d}\mu} f_q^{\mathrm{TMD}}(x,ec{b}_T,\mu,\zeta) = \gamma_\mu^q(\mu,\zeta) f_q^{\mathrm{TMD}}(x,ec{b}_T,\mu,\zeta)$$

- Anomalous dimension: $\gamma^q_{\mu}(\mu,\zeta) = \Gamma^q_C[\alpha_s(\mu)] \ln \frac{\mu^2}{\zeta} + \gamma^q_{\mu}[\alpha_s(\mu)]$
- Evolution perturbative for $\mu \gtrsim \Lambda_{\rm QCD}$
- Collins-Soper evolution:

$$\zeta rac{\mathrm{d}}{\mathrm{d}\zeta} f_q^{\mathrm{TMD}}(x,ec{b}_T,\mu,\zeta) = rac{1}{2}\gamma_\zeta^q(\mu,b_T)f_q^{\mathrm{TMD}}(x,ec{b}_T,\mu,\zeta)$$

Anomalous dimension: (independent of hadron state!)

$$\gamma^q_\zeta(\mu,b_T) = -2\int_{1/b_T}^\mu rac{\mathrm{d}\mu'}{\mu'}\Gamma^q_C[lpha_s(\mu')] + \gamma^q_\zeta[lpha_s(1/b_T)]$$

• Nonperturbative for $b_T \sim \Lambda_{\rm QCD}^{-1}$, independently of μ, ζ

• Collins-Soper scale fixed to $\zeta_n \zeta_{ar n} = Q^4 o$ think $\zeta_n = (x_n P_n^-)^2$

• Nonperturbative f^{TMD} , determined at low scales $\mu \sim \sqrt{\zeta} \sim \text{GeV}$, must be evolved to collider scales $\mu \sim \sqrt{\zeta} \sim Q$

Requires nonperturbative knowledge of
 ^q
 ^q
 ^c

Towards Quasi TMDPDFs

- Calculate nonperturbative Collins-Soper kernel $\gamma_{\zeta}^{q}(\mu, b_{T})$ [ME, Stewart, Zhao; 1811.00026]
- Calculate nonperturbative TMDPDF $f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)$ [ME, Stewart, Zhao; 1901.03865] (see also [Ji, Jin, Yuan, Zhang, Zhao; 1801.05930])

Reminder: Collinear quasi PDF

• PDF:

$$f_{q}(x,\mu) = \int \frac{db^{+}}{4\pi} e^{ib^{+}(xP_{n}^{-})} \langle P(P_{n}) | \bar{q}(b^{+}) W_{n}(b^{+},0) (\gamma_{0} + \gamma_{3}) q(0) | P(P_{n}) \rangle$$
• Quasi PDF: Equal-time correlator [Ji '13, '14]

$$\tilde{f}_{q}(x,P_{z},\mu) = \int \frac{db^{z}}{4\pi} e^{ib^{z}(xP_{z})} \langle P(P_{b^{z}}) | \bar{q}(b^{z}) W_{z}(b^{z},0) \gamma_{3}q(0) | P(P_{z}) \rangle$$
• Factorization theorem:
[Xiong, Ji, Zhang, Zhao '13; Ma, Qiu '14 '17;
Izubuchu, Ji, Jin, Stewart, Zhao '18]

$$(\tilde{f}_{i}(x,P_{z},\tilde{\mu})) = \int_{-1}^{1} \frac{dy}{y} C_{ij}\left(\frac{x}{y}, \frac{\tilde{\mu}}{P_{z}}, \frac{\mu}{yP_{z}}\right) (f_{j}(y,\mu)) + O\left(\frac{M^{2}}{P_{z}^{2}}, \frac{\Lambda_{QCD}^{2}}{x^{2}P_{z}^{2}}\right)$$
Simulation/renormalization Perturbative matching PDF Higher-twist correction on lattice

< 67 ►

Roadmap:

- Construct quasi beam function $\tilde{B}_q(x, \vec{b}_T, ...)$ and quasi soft function $\tilde{S}^q(b_T, ...)$
 - Must be computable on lattice
 - Must regulate UV and rapidity divergences on lattice
- Combine into quasi TMDPDF

 $ilde{f}_q^{ ext{TMD}}(x,ec{b}_T,\dots) = ilde{Z}_{ ext{uv}}(\dots) ilde{B}_q(x,ec{b}_T,\dots) ilde{S}^q(b_T,\dots)$

- Rapidity divergences must cancel
- Derive *perturbative* matching $\tilde{f}_{a}^{\text{TMD}}(x, \vec{b}_{T}, \dots) = (C^{\text{TMD}} \otimes f_{a}^{\text{TMD}})(x, \vec{b}_{T}, \mu, \zeta)$

Previous work:

- Importance of soft subtraction to construct quasi TMDPDFs [Ji, Sun, Xiong, Yuan '15]
- Regularization of rapidity divergences by finite lattice size [Ji, Jin, Yuan, Zhang, Zhao '18]

< **∂** >

Constructing the quasi beam function

Beam function: (light-cone correlator)

$$n = (1, 0, 0, 1)$$

 $b^{\pm} = b^0 \mp b^z$

$$B_q(x,ec{b}_T,\dots) = \int \! rac{\mathrm{d} b^+}{4\pi} e^{-rac{\mathrm{i}}{2} b^+(xP^-)} \Big\langle p(P) \Big| ar{q}(b^\mu) W^{(0,ec{0}_T)}_{(b^+,ec{b}_T)} rac{\gamma^-}{2} q(0) \Big| p(P) \Big
angle$$

Quasi beam function: (equal-time correlator)

$$ilde{B}_q(x,ec{b}_T,\dots) = \int\!rac{{\mathrm{d}} b^z}{2\pi} e^{{\mathrm{i}} b^z(xP^z)} \Bigl\langle p(P) \Bigl| ar{q}(b^\mu) W^{(0,ec{0}_T)}_{(b^z,ec{b}_T)} rac{\gamma^3}{2} q(0) \Bigl| p(P) \Bigr
angle$$

- Wilson line path:
 - Finite lattice size requires to truncate at length L
 - Bare operators related by Lorentz boost

Constructing the quasi soft function

Soft function: (light-cone correlator)

 $egin{aligned} n &= (1,0,0,1) \ ar{n} &= (1,0,0,-1) \end{aligned}$

 $S^q(b_T) = \langle 0 ig| [S^{\dagger}_{oldsymbol{n}} S_T S_{oldsymbol{ar{n}}}] (ec{b}_T) [S^{\dagger}_{oldsymbol{ar{n}}} S^{\dagger}_T S_{oldsymbol{n}}] (ec{0}_T) ig| 0
angle$

Quasi soft function: (equal-time correlator)

 $ilde{S}^q(b_T) = \langle 0 ig| [S^\dagger_{\hat{m{z}}} S_T S_{-\hat{m{z}}}] (ec{b}_T) [S^\dagger_{-\hat{m{z}}} S_T S_{\hat{m{z}}}] (ec{0}_T) ig| 0
angle$

- Wilson line path:
 - Finite lattice size requires to truncate at length L
 - Bare operators not related by Lorentz boost (more on this later)

Constructing the quasi TMDPDF

Recall physical TMDPDF:

$$f_q^{ ext{TMD}}(x, ec{b}_T, \mu, \zeta) = \lim_{\substack{\epsilon o 0 \ au o 0}} Z_{ ext{uv}}(\epsilon, \mu, \zeta) B_q(x, ec{b}_T, \epsilon, au, xP) S^q(b_T, \epsilon, au)$$

On the lattice:

$$egin{split} ilde{f}^{ ext{TMD}}_q(x,ec{b}_T,\mu,P^{m{z}}) &= \int rac{ ext{d}b^z}{2\pi}\,e^{ ext{i}b^z(xP^z)}\,\lim_{\substack{a o 0\ L o\infty}}\, ilde{Z}'_q(b^z,\mu, ilde{\mu}) ilde{Z}^q_{ ext{uv}}(b^z, ilde{\mu},a) \ & imes ilde{B}_q(b^z,ec{b}_T,a,L,P^z) ilde{S}^q(b_T,a,L) \end{split}$$

- Lattice regulators:
 - Lattice spacing a acts as UV regulator
 - Wilson line length L acts as rapidity regulator
 - Must extrapolate $L o \infty, a o 0$
- Renormalization on lattice:
 - Need to subtract Wilson-line self energies (vanish on light-cone)
 - Subtraction \tilde{Z}_{uv}^{q} multiplicative in b^{z} -space
 - \tilde{Z}'_q converts from lattice renormalization scheme $(\tilde{\mu})$ to \overline{MS} scheme (μ)

< 67 →

Relating quasi TMDPDF and TMDPDF

- Goal: perturbative matching between TMDPDF and quasi TMDPDF
- Due to soft mismatch: expect nonperturbative relation

Quasi-TMD from lattice Perturbative kernel TMDPDF

$$\begin{array}{c} \downarrow \\ (\vec{f}_{i}^{\text{TMD}}(x, \vec{b}_{T}, \mu, P^{z})) = (C_{ij}^{\text{TMD}}(\mu, xP^{z})) (f_{j}^{\text{TMD}}(x, \vec{b}_{T}, \mu, \zeta)) \\
\times (g_{ij}^{S}(b_{T}, \mu)) (\exp\left[\frac{1}{2}\ln\frac{(2xP^{z})^{2}}{\zeta}\gamma_{\zeta}^{j}(\mu, b_{T})\right]) \\
& \uparrow \\
\text{Soft mismatch} \\ \begin{array}{c} Collins-Soper kernel \\ (ensures \zeta independence) \end{array}$$

- Perturbative matching requires
 - $\flat \ \zeta = (2xP^z)^2$
 - Quasi-soft functions such that $g^S = 1$
- or to take ratios such that g^S, γ_{ζ} cancel
- Relation not proven, but verified at NLO

< 行!)

Verification of matching at NLO

- Test matching relation perturbatively at NLO
 - Work in $\overline{\mathbf{MS}}$ scheme, not lattice renormalization
 - On-shell external quark state
 - Ignore mixing with gluons (→ isovector quark)
- Quasi-TMDPDF becomes simple product:

$$ilde{f}^{ ext{TMD}}_q(x,ec{b}_T,\mu,P^{m{z}}) = \lim_{\substack{\epsilon o 0 \ L o 0}} ilde{Z}^q_{ ext{uv}}(\mu,P^{m{z}},\epsilon) rac{ ilde{B}_q(x,ec{b}_T,\epsilon,L,P^{m{z}})}{\sqrt{ ilde{S}^q(b_T,\epsilon,L)}}$$

- Precise form fixed by cancellation of rapidity divergences L/b_T
- Example diagrams:

Verification of matching at NLO

- Result at one loop: (nonsinglet q = u d) $\frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)} = 1 + \frac{\alpha_s C_F}{2\pi} \left[-\frac{1}{2} \ln^2 \frac{(2xP^z)^2}{\mu^2} + \ln \frac{(2xP^z)^2}{\mu^2} + \ln \frac{(2xP^z)^2}{\mu^2} + \ln (b_T^2 \mu^2) - \ln (b_T^2 \mu^2) \ln \frac{(2xP^z)^2}{\zeta} + \cdots \right]$
- Compare to matching formula:

 $\frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)} = C_q^{\text{TMD}}(\mu, xP^z) \, g_q^S(b_T, \mu) \exp\left[\frac{1}{2} \ln \frac{(2xP^z)^2}{\zeta} \gamma_\zeta^j(\mu, b_T)\right]$

- Comparison:
 - Perturbative kernel C_{q}^{TMD}
 - Nonperturbative Collins-Soper kernel
 ^q
 ^c
 - \Rightarrow NLO results confirms that $\zeta = (2xP^z)^2$
 - Leftover nonperturbative logarithm $\ln(b_T^2 \mu^2)$
- Interpretation: remnant of failure of relating soft factors S^q and $ilde{S}^q$

Bent soft function

• Recall soft and quasi soft function:

$$\begin{split} S^{q}(b_{T}) &= \langle 0 \big| [S_{n}^{\dagger}S_{T}S_{n}](\vec{b}_{T}) [S_{\vec{n}}^{\dagger}S_{T}^{\dagger}S_{n}](\vec{0}_{T}) \big| 0 \rangle \\ \tilde{S}^{q}(b_{T}) &= \langle 0 \big| [S_{\hat{z}}^{\dagger}S_{T}S_{-\hat{z}}](\vec{b}_{T}) [S_{-\hat{z}}^{\dagger}S_{T}S_{\hat{z}}](\vec{0}_{T}) \big| 0 \rangle \end{split}$$

• $S^q(b_T)$ and $\tilde{S}^q(b_T)$ not related through Lorentz boost

Define "bent" soft function to remove boost-violating diagrams at NLO:

 $ilde{S}^q_{ ext{bent}}(b_T) = \langle 0 ig| [S^\dagger_{\hat{m{z}}} S_T S_{-ar{m{n}}_{\perp}}] (ar{b}_T) [S^\dagger_{-ar{m{n}}_{\perp}} S_T S_{\hat{m{z}}}] (ar{0}_T) ig| 0
angle$

• Compare Wilson line paths:

Yields a perturbative matching relation at NLO

Proof beyond NLO required

Markus Ebert (MIT)

Collins-Soper kernel from Lattice QCD

[ME, Stewart, Zhao; 1811.00026]

05/15/2019 13 / 18

Collins-Soper kernel

- Recall TMD factorization for $pp \to Z/\gamma^* \to l^+l^-$: $\frac{\mathrm{d}\sigma}{\mathrm{d}^2 \vec{q}_T} = H(Q,\mu) \int \mathrm{d}^2 \vec{b}_T \, e^{\mathrm{i} \vec{q}_T \cdot \vec{b}_T} \, f_n^{\mathrm{TMD}}(x_1, \vec{b}_T, \mu, \zeta_1) \, f_n^{\mathrm{TMD}}(x_2, \vec{b}_T, \mu, \zeta_2)$
- Recall TMDPDF evolution equations:

$$\begin{split} & \mu \frac{\mathrm{d}}{\mathrm{d}\mu} f_q^{\mathrm{TMD}}(x, \vec{b}_T, \mu, \zeta) = \gamma_{\mu}^q(\mu, \zeta) f_q^{\mathrm{TMD}}(x, \vec{b}_T, \mu, \zeta) \\ & \zeta \frac{\mathrm{d}}{\mathrm{d}\zeta} f_q^{\mathrm{TMD}}(x, \vec{b}_T, \mu, \zeta) = \frac{1}{2} \gamma_{\zeta}^q(\mu, b_T) f_q^{\mathrm{TMD}}(x, \vec{b}_T, \mu, \zeta) \end{split}$$

Combined solution:

$$egin{aligned} f_q^{ ext{TMD}}(x,ec{b}_T,\mu,\zeta) &= \expiggl[\int_{\mu_0}^{\mu}rac{\mathrm{d}\mu'}{\mu'}\gamma_{\mu}^q(\mu',\zeta_0)iggr] \expiggl[rac{1}{2}\gamma_{\zeta}^q(\mu,b_T)\lnrac{\zeta}{\zeta_0}iggr] f_q^{ ext{TMD}}(x,ec{b}_T,\mu_0,\zeta_0) \end{aligned}$$

• Solution resums large logarithms $\ln(Q^2 b_T^2) \sim \ln rac{Q^2}{q_T^2}$

• γ_{ζ}^{q} required to connect lattice calculations / nonperturbative extractions at $\mu_{0} \sim P^{z} \sim \mathcal{O}(\text{GeV})$ to scales in factorization theorem $\mu \sim Q, P^{z} \sim Q/x$

Collins-Soper kernel

Nonperturbative knowledge of $\gamma_{c}^{q}(\mu, b_{T})$ important for (LHC) phenomenology.

Markus Ebert (MIT)

Quasi TMDPDFs & Collins-Soper Kernel from Lattice

Collins-Soper kernel from Lattice QCD

- Reminder: Isovector quark (quasi) TMDPDFs related by (at NLO) $\frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)} = C_q^{\text{TMD}}(\mu, xP^z) g_q^S(b_T, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu, b_T) \ln \frac{(2xP^z)^2}{\zeta}\right]$
- Nonperturbative factor $g_q^S(b_T,\mu)$ cancels in ratios with same b_T and μ
- Factor out Collins-Soper kernel by varying proton momenta $P_1^z \neq P_2^z$: $\gamma_{\zeta}^q(\mu, b_T) = \frac{1}{\ln(P_1^z/P_2^z)} \ln \frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P_1^z)}{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P_2^z)} \frac{C_q^{\text{TMD}}(\mu, xP_2^z)}{C_q^{\text{TMD}}(\mu, xP_1^z)}$ $= \frac{1}{\ln(P_1^z/P_2^z)} \ln \frac{C_q^{\text{TMD}}(\mu, xP_2^z) \int db^z e^{ib^z x P_1^z} \tilde{Z}' \tilde{Z}_{uv} \tilde{B}_q(b^z, \vec{b}_T, a, L, P_1^z)}{C_q^{\text{TMD}}(\mu, xP_1^z) \int db^z e^{ib^z x P_2^z} \tilde{Z}' \tilde{Z}_{uv} \tilde{B}_q(b^z, \vec{b}_T, a, L, P_2^z)}$
- Independent of hadron state: Can use pion state for simplicity
- Soft factor cancels in ratio \rightarrow sufficient to calculate beam function
- First exploratory studies already in progress

Important universal QCD quantity within reach of lattice QCD!

Ratios of TMDPDFs

- Reminder: Isovector quark (quasi) TMDPDFs related by (at NLO) $\frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)} = C_q^{\text{TMD}}(\mu, xP^z) g_q^S(b_T, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu, b_T) \ln \frac{(2xP^z)^2}{\zeta}\right]$
- Nonperturbative factor $g_a^S(b_T,\mu)$ cancels in ratios with same b_T and μ
- In general: Collins-Soper kernel γ_{ζ}^{q} must cancel as well
 - Must choose same values for x, P^z, ζ
- Ex.: ratios of different hadron states $h_1 \neq h_2$ (e.g. proton, neutron, pion): $\frac{\tilde{f}_{q/h_1}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{\tilde{f}_{q/h_2}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)} = \frac{C_{q/h_1}^{\text{TMD}}(\mu, xP^z)}{C_{q/h_2}^{\text{TMD}}(\mu, xP^z)} \frac{f_{q/h_1}^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)}{f_{q/h_2}^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)}$
- Similarly: ratios with different spin structures
 - Similar ratios have already been considered using moments in x [Musch et al '10 '12; Engelhardt et al '15; Yoon et al '17]
 - See talk my M. Engelhardt later

Ratios of TMDPDFs

- Reminder: Isovector quark (quasi) TMDPDFs related by (at NLO) $\frac{\tilde{f}_q^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{f_q^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)} = C_q^{\text{TMD}}(\mu, xP^z) g_q^S(b_T, \mu) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu, b_T) \ln \frac{(2xP^z)^2}{\zeta}\right]$
- Nonperturbative factor $g_a^S(b_T,\mu)$ cancels in ratios with same b_T and μ
- In general: Collins-Soper kernel γ_{ζ}^{q} must cancel as well
 - Must choose same values for x, P^z, ζ
- Ex.: ratios of different hadron states $h_1 \neq h_2$ (e.g. proton, neutron, pion): $\frac{\tilde{f}_{q/h_1}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}{\tilde{f}_{q/h_2}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)} = \frac{C_{q/h_1}^{\text{TMD}}(\mu, xP^z)}{C_{q/h_2}^{\text{TMD}}(\mu, xP^z)} \frac{f_{q/h_1}^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)}{f_{q/h_2}^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)}$
- Similarly: ratios with different spin structures
 - Similar ratios have already been considered using moments in x [Musch et al '10 '12' Engelbardt et al '15' Yoon et al '17]

Lattice can give important constraints on physical TMDPDFs after all!

Conclusions

05/15/2019 17 / 18

< 67 ►

Conclusions

Summary:

- TMDs are in general much less constrained from experiment than PDFs
 - Determination from lattice desired
- TMD factorization more complicated:
 - Wilson line paths
 - Rapidity divergences
 - Combining hadronic & soft vacuum matrix matrix element
- In general: nonperturbative relation between quasi-TMDPDF and TMDPDF
 - Proposed perturbative relation using bent soft function at NLO)
- Proposed method to determine Collins-Soper kernel from Lattice
- More general: can study ratios of TMDPDFs on lattice (→ see also M. Engelhardt's talk)

Outlook:

- Need proof for matching relation (beyond one loop)
- Calculate γ_{c}^{q} from lattice (\rightarrow see Y. Zhao's talk in the afternoon)

Backup slides

Overview of rapidity regulators

Regulator	Beam function B_q	Soft factor Δ_S^q	TMDPDF $f_q^{\text{TMD}} = B_q \Delta_S^q$
Collins	$-\frac{1}{2}L_b^2, \frac{5}{2}L_b$	$-L_b$	$-rac{1}{2}L_b^2,rac{3}{2}L_b$
δ regulator	$\frac{3}{2}L_b$	$-\frac{1}{2}L_b^2$	$-rac{1}{2}L_b^2,\;rac{3}{2}L_b$
η regulator	$\frac{3}{2}L_b$	$-\frac{1}{2}L_b^2$	$-\frac{1}{2}L_b^2, \frac{3}{2}L_b$
Exp. regulator	$-L_b^2 , {3 \over 2} L_b$	$\frac{1}{2}L_b^2$	$-\frac{1}{2}L_b^2, \frac{3}{2}L_b$
	quasi \tilde{B}_q	quasi $\tilde{\Delta}_{S}^{q}$	quasi $\tilde{f}_q^{\text{TMD}} = \tilde{B}_q \tilde{\Delta}_S^q$
Finite L , naive $\tilde{\Delta}_S^q$	$-\frac{1}{2}L_b^2, \frac{9}{2}L_b$	$-2L_b$	$-\frac{1}{2}L_b^2, \frac{5}{2}L_b$
Finite L , bent $\tilde{\Delta}_S^q$	$-\frac{1}{2}L_b^2, \frac{9}{2}L_b$	$-3L_b$	$-rac{1}{2}L_b^2,rac{3}{2}L_b$

- Dependence of beam and soft function on $L_b = \ln rac{b_T^2 \mu^2}{4e^{-2\gamma_E}}$ depends on regulator
- No agreement between beam function and quasi beam function in any regulator
- Dependence of TMDPDF on L_b is independent of regulator

Rapidity divergences at finite L

• Recall: Rapidity divergences arise from integrals of type

$$I_{
m div} = \int rac{{
m d}k^+ {
m d}k^-}{(k^+k^-)^\epsilon} rac{f(k^+k^-)}{k^+k^-} = \int rac{{
m d}(k^+/k^-)}{2\,k^+/k^-} \int rac{{
m d}(k^+k^-)}{(k^+k^-)^\epsilon} rac{f(k^+k^-)}{k^+k^-}$$

Integrand depends only on product k⁺k⁻

• Eikonal propagator for
$$L<\infty$$
: $rac{1}{k^{\pm}+\mathrm{i}0}
ightarrowrac{1-e^{\mathrm{i}k^{\pm}L}}{k^{\pm}}$

• With finite *L*:

$$I_{
m div}
ightarrow \int {
m d}k^+ {
m d}k^- rac{f(k^+k^-)}{(k^+k^-)^\epsilon} rac{1-e^{{
m i}k^+L}}{k^+} rac{1-e^{-{
m i}k^-L}}{k^-}$$

- Finite L fully regulates $k^{\pm}
 ightarrow 0$
- No rapidity divergences for finite L