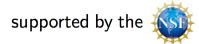
Quasi-GPDs: Model Results and Beyond

(A. Metz, Temple University)

- Introduction: parton quasi-distributions
- Quasi-GPDs
 - Definition and motivation
 - Results in scalar diquark model
 - Power corrections
- Model-independent results
 - Moments of quasi-distributions and spin sum rule
 - Definition of quasi-distributions
 - ξ -symmetry of quasi-GPDs
- Summary

Based on: S. Bhattacharya, C. Cocuzza, A.M., arXiv:1808.01437, arXiv:1903.05721



Quasi-PDFs

 $(\rightarrow \text{ talks by Constantinou, Monahan, Steffens, Ebert, Engelhardt, Richards, Zhao, ...})$

• Standard (light-cone) unpolarized quark PDF (support: $-1 \le x \le 1$)

$$f_1(x) = \frac{1}{2} \int \frac{dz}{2\pi} e^{ik \cdot z} \left\langle P | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | P \right\rangle \Big|_{z^+ = 0, \vec{z}_\perp = \vec{0}_\perp}$$

- correlator depends on time $t = z^0 = \frac{1}{\sqrt{2}} z^- \rightarrow \text{cannot}$ be computed in LQCD

• Suggestion: consider quasi-PDF instead (Ji, 2013) (support: $-\infty < x < \infty$)

$$f_{1,Q(3)}(x, \mathbf{P}^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \langle P | \bar{\psi}(-\frac{z}{2}) \gamma^{3} \mathcal{W}_{Q}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | P \rangle \Big|_{z^{0} = 0, \vec{z}_{\perp} = \vec{0}_{\perp}}$$

- correlator depends on position $z^3 \rightarrow {\rm can}$ be computed in LQCD
- quasi-PDF depends on $x = k^3/P^3$, and on hadron momentum P^3
- quasi-PDF and standard PDF contain same IR physics, but different UV physics
- at large P^3 , difference in UV behavior is dealt with via perturbative matching (e.g., Xiong, Ji, Zhang, Zhao, 2013 / Stewart, Zhao, 2017 / Izubuchi, Ji, Jin, Stewart, Zhao, 2018)
- LQCD calculations at finite $P^3 \rightarrow$ power corrections

• Generic structure of matching formula (scale-dependence omitted)

$$f_{1,Q(3)}(x,P^3) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) f_1(y) + \mathcal{O}\left(\frac{M^2}{(P^3)^2}, \frac{\Lambda_{\text{QCD}}^2}{(P^3)^2}\right)$$

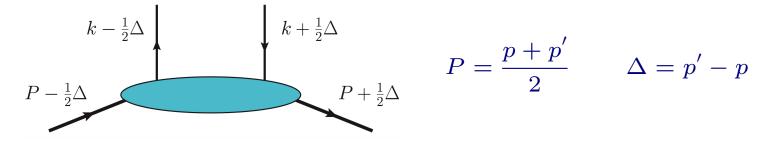
- -C is matching coefficient (presently known to one-loop order)
- several works on power corrections available
- quasi-PDFs can be considered as "good lattice cross section" (Ma, Qiu, 2014) (means "good lattice observable")
- Choosing γ^0 (instead of γ^3) for unpolarized quasi-PDF (Radyushkin, 2016)

$$f_{1,Q(\mathbf{0})}(x,P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \langle P | \bar{\psi}(-\frac{z}{2}) \gamma^{\mathbf{0}} \mathcal{W}_{Q}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | P \rangle \Big|_{z^{0}=0, \vec{z}_{\perp}=\vec{0}_{\perp}}$$

- in principle, any linear combination of γ^3 and γ^0 would work (except $\gamma^-)$
- $f_{1,Q(0)}$ better behaved w.r.t. renormalization (Constantinou, Panagopoulos, 2017)
- Several other suggestions for computing PDFs and related quantities; some of them were proposed before quasi-PDFs and/or are related to quasi-PDFs (Braun, Müller, 2008 / Ma, Qiu, 2014 / Radyushkin, 2017 / ...)

Definition of (Quasi-) GPDs

• GPD correlator: graphical representation



• (Light cone) correlator for standard GPDs of quarks

$$F^{[\Gamma]}(x,\Delta) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \left\langle p' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p \right\rangle \Big|_{z^{+}=0, \vec{z}_{\perp}=\vec{0}_{\perp}}$$

correlator parameterized through GPDs $X(x, \xi, t)$

$$x = \frac{k^+}{P^+}$$
 $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2P^+}$ $t = \Delta^2$

• Kinematic relation

$$t = -\frac{1}{1-\xi^2} \left(4\xi^2 M^2 + \vec{\Delta}_{\perp}^2\right)$$

• (Spatial) correlator for quasi-GPDs of quarks (Ji, 2013)

$$F_{\rm Q}^{[\Gamma]}(x,\Delta;P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \langle p' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\rm Q}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{0} = 0, \vec{z}_{\perp} = \vec{0}_{\perp}}$$

• Definition of twist-2 vector quasi-GPDs $H_{
m Q}$ and $E_{
m Q}$

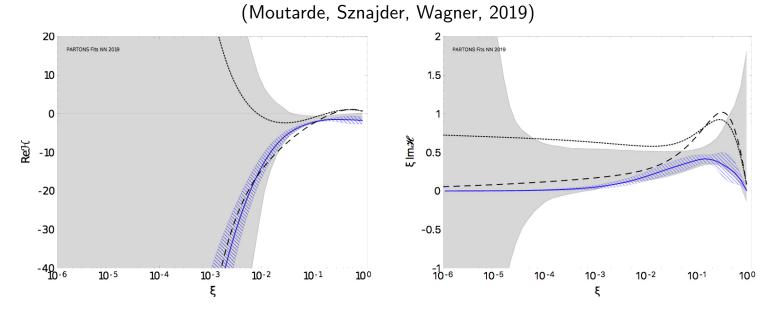
$$\begin{split} F_{\rm Q}^{[\gamma^0]}(x,\Delta;P^3) &= \frac{1}{2P^0} \,\bar{u}(p') \left[\gamma^0 \, H_{\rm Q(0)} + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} \, E_{\rm Q(0)} \right] u(p) \\ F_{\rm Q}^{[\gamma^3]}(x,\Delta;P^3) &= \frac{1}{2P^3} \,\bar{u}(p') \left[\gamma^3 \, H_{\rm Q(3)} + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} \, E_{\rm Q(3)} \right] u(p) \end{split}$$

- we have explored both definitions of quasi-GPDs
- in forward limit, definitions of quasi-GPDs reduce to most frequently used definitions of quasi-PDFs
- quasi-GPDs depend on

$$x = \frac{k^3}{P^3} \neq \frac{k^+}{P^+}$$
 ξ $t = \Delta^2$ P^3

Why Studying Quasi-GPDs?

- Non-trivial behavior of quasi-GPDs at $x = \pm \xi$?
- Extraction of GPDs from experimental data is difficult
 - very recent example



- real and imaginary part of Compton form factor ${\cal H}$ using neural network approach

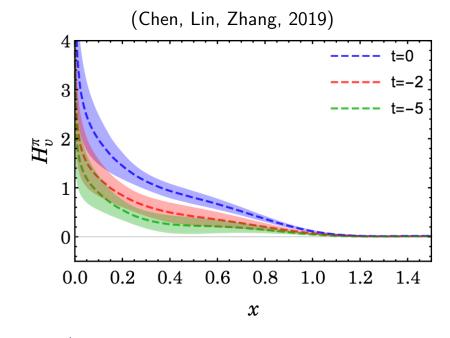
- at present, errors are still (very) large
- In the future, combination of experimental data (also from EIC) and input from LQCD may be used to pin down GPDs

Available Studies on Quasi-GPDs

• Matching calculations for quasi-GPDs

(Ji, Schäfer, Xiong, Zhang, 2015 / Xiong, Zhang, 2015 / Liu, Wang, Xu, Zhang, Zhang, Zhao, Zhao, 2019)

- Model calculations, etc (Bhattacharya, Cocuzza, AM, 2018, 2019)
- Exploratory LQCD calculation for pion



– calculation of
$$H$$
 for π^+ for $u_{
m val}-d_{
m val}$

– calculation for $\xi=0$ and $m_{\pi}=310\,{
m MeV}$

Diquark Spectator Model

- Idea: describe spectator partons as diquarks (of spin-0 or spin-1) (e.g., Jakob, Mulders, Rodrigues, 1997)
- Graphical representation of two-quark correlator

- Often phenomenological nucleon-quark-diquark vertices with form factors used
- Previous studies of quasi-PDFs in diquark spectator model (Gamberg, Kang, Vitev, Xing, 2014 / Bacchetta, Radici, Pasquini, Xiong, 2016)
- We use scalar diquark model (SDM)

$$egin{aligned} \mathcal{L}_{ ext{SDM}} &= & ar{\Psi}ig(i\,\partial\!\!\!/ - Mig)\Psi + ar{\psi}ig(i\,\partial\!\!\!/ - m_qig)\psi + rac{1}{2}ig(\partial_\muarphi\,\partial^\muarphi - m_s^2\,arphi^2ig) \ &+ gig(ar{\Psi}\,\psi\,arphi + ar{\psi}\,\Psi\,arphiig) \end{aligned}$$

• Cut-graph (diquark on-shell) can be used to compute PDFs, but care has to be taken for quasi-PDFs (Bhattacharya, Cocuzza, AM, 2018)

Analytical Results in Scalar Diquark Model

- Considered all eight leading-twist quark GPDs
- For standard GPDs, agreement with results extracted from calculation of GTMDs (Meißner, AM, Schlegel, 2009)
- Correlator for quasi-GPDs

$$\begin{split} F_{\mathrm{Q}}^{[\Gamma]}(x,\Delta;P^{3}) &= \frac{i\,g^{2}}{2(2\pi)^{4}} \int dk^{0}\,d^{2}\vec{k}_{\perp} \,\frac{\bar{u}(p')\left(\not{k} + \frac{\Delta}{2} + m_{q}\right)\Gamma\left(\not{k} - \frac{\Delta}{2} + m_{q}\right)u(p)}{D_{\mathrm{GPD}}}\\ D_{\mathrm{GPD}} &= \left[\left(k + \frac{\Delta}{2}\right)^{2} - m_{q}^{2} + i\varepsilon\right]\left[\left(k - \frac{\Delta}{2}\right)^{2} - m_{q}^{2} + i\varepsilon\right]\left[\left(P - k\right)^{2} - m_{s}^{2} + i\varepsilon\right] \end{split}$$

- Quasi-GPDs are continuous at x = ± ξ (even beyond leading twist); differs from (higher-twist) GPDs (Aslan, Burkardt, Lorcé, AM, Pasquini, 2018 / Aslan, Burkardt, 2018)
- For $P^3 \rightarrow \infty$, all quasi-GPDs reduce to corresponding standard GPDs

Numerical Results in Scalar Diquark Model

- Parameter choice
 - coupling (exact value of g irrelevant for our purpose)

g = 1

– masses must satisfy $M < m_s + m_q$; we mostly use

$$m_s=0.7\,{
m GeV}$$
 $m_q=0.35\,{
m GeV}$

values similar to previous work (Gamberg, Kang, Vitev, Xing, 2014)

- "optimal choice" for minimizing difference btw quasi and standard distributions
- momentum transfer

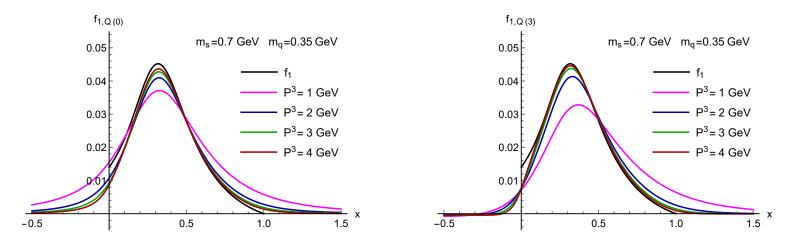
 $|\vec{\Delta}_{\perp}| = 0$

– cutoff for k_{\perp} integration

$$\Lambda = 1 \, \text{GeV}$$

- variations of $|\vec{\Delta}_{\perp}|$ and Λ do not affect general results
- using form factor (rather than k_{\perp} cutoff) does not affect general results

• Quasi-PDFs



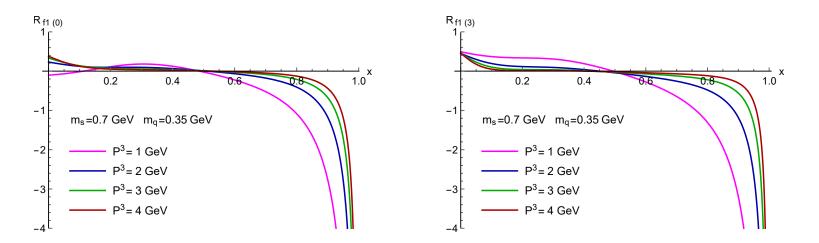
– for larger $P^3~(\gtrsim 2\,{
m GeV})$, quasi-PDFs are close to f_1 in wide x range

- for larger P^3 , not much difference between $f_{1,Q(0)}$ and $f_{1,Q(3)}$; this is general feature for all cases
- considerable discrepancies between quasi-PDFs and f_1 at large x (compare also, Gamberg, Kang, Vitev, Xing, 2014)
- considerable discrepancies between quasi-PDFs and f_1 at small x

 f_1 is discontinuous at x = 0 $(f_1(x < 0) = 0)$

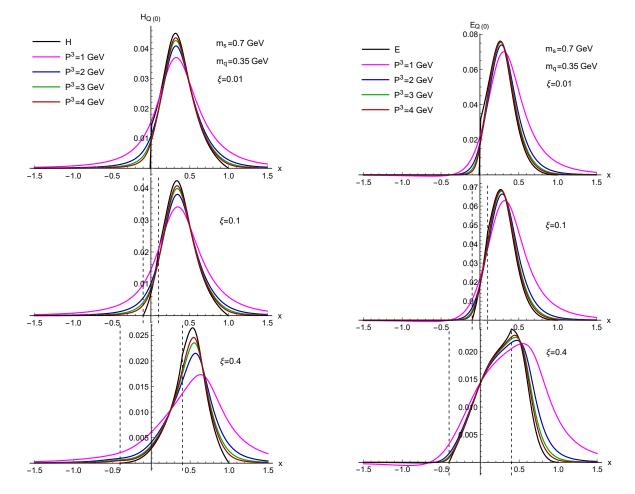
quasi-PDFs are continuous at x = 0 and must change rapidly around x = 0discontinuity is probably not a model artifact $(f_1^q(x < 0) = -f_1^{\bar{q}}(x > 0))$ • Relative difference for quasi-PDFs

$$R_{f1(0/3)}(x;P^3) = rac{f_1(x) - f_{1,\mathrm{Q}(0/3)}(x;P^3)}{f_1(x)}$$



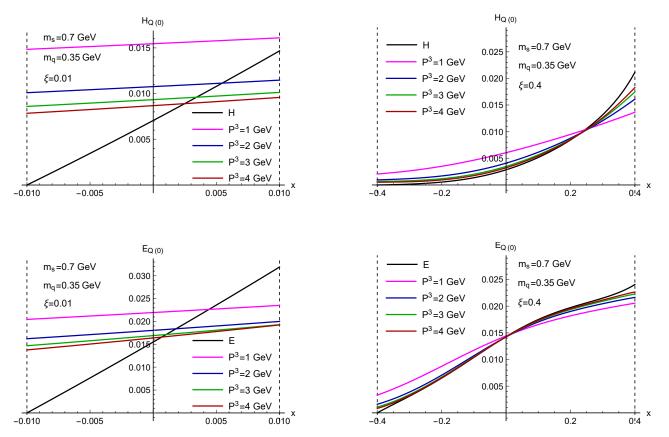
- relative difference makes discrepancies very explicit (especially at large x)
- for $P^3 \gtrsim 2 \, {
 m GeV}$, good results for 0.1 < x < 0.8
- at large x, problem partly due to mismatch btw k^+/P^+ and k^3/P^3 for finite P^3
- calculations of quasi-PDFs in LQCD also lead to discrepancies (at large x)

• Quasi-GPDs: sample plots



- for larger P^3 ($\gtrsim 2 \, {
 m GeV}$), quasi-GPDs are close to standard GPDs in wide x range; agreement can depend on ξ
- considerable discrepancies between quasi and standard GPDs for large x; issue tends to become more severe as ξ increases
- qualitatively, similar results for all leading-twist GPDs

• Quasi-GPDs in ERBL region



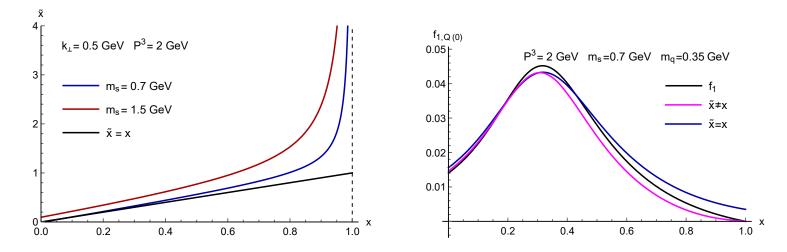
- standard (twist-2) GPDs are continuous in entire x range (unlike PDFs)
- for small ξ , large discrepancies between quasi and standard GPDs in ERBL region (compare region around x = 0 for PDFs)
- for large ξ , good agreement btw quasi and standard GPDs in large part of ERBL region \rightarrow potentially nice opportunity for LQCD calculations

Parton Momenta and Power Corrections

- Recall: parton momentum fractions of standard and quasi PDFs are different; no model-independent relation btw momentum fractions
- Relation in SDM in cut-graph approximation (see also, Gamberg, Kang, Vitev, Xing, 2014)

$$\tilde{x} = \frac{k^3}{P^3} = x + \frac{1}{4(P^3)^2} \left(\frac{\vec{k}_{\perp}^2 + m_s^2}{1 - x} - (1 - x)M^2\right) + \mathcal{O}\left(\frac{1}{(P^3)^4}\right)$$

- difference btw \tilde{x} and x is power correction, but $\tilde{x} x \to \infty$ as $x \to 1$
- some numerics



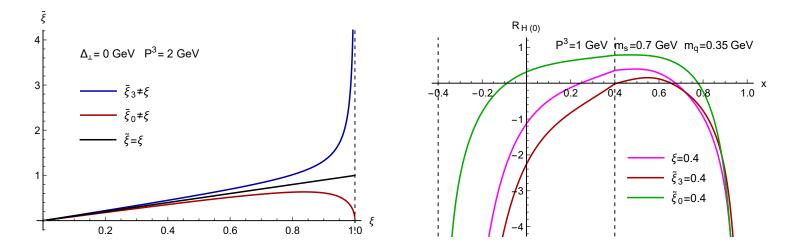
- improved results at (very) large x if one distinguishes btw \tilde{x} and x
- other power corrections prevent further improvement

Skewness and Power Corrections

- Quasi-GPDs can be computed using standard skewness ξ
- Other definitions for skewness could be used. Examples:

$$\tilde{\xi}_3 = -\frac{\Delta^3}{2P^3} = \delta \,\xi \,, \qquad \tilde{\xi}_0 = -\frac{\Delta^0}{2P^0} = \frac{\xi}{\delta} \,, \qquad \text{with } \delta = \frac{P^0}{P^3} = 1 + \mathcal{O}\left(\frac{1}{(P^3)^2}\right)$$

- δ describes power correction, but diverges as $\xi \to 1$
- some numerics



- different skewness variables can lead to considerable differences
- which skewness variable works best depends on x and GPD

Moments of Quasi-Distributions and Spin Sum Rule

• Lowest moment

$$\begin{split} \int_{-1}^{1} dx \, H^{q}(x,\xi,t) &= F_{1}^{q}(t) \\ &= \int_{-\infty}^{\infty} dx \, \frac{1}{\delta} \, H^{q}_{\mathrm{Q}(0)}(x,\xi,t;P^{3}) = \int_{-\infty}^{\infty} dx \, H^{q}_{\mathrm{Q}(3)}(x,\xi,t;P^{3}) \\ \int_{-1}^{1} dx \, E^{q}(x,\xi,t) &= F_{2}^{q}(t) \\ &= \int_{-\infty}^{\infty} dx \, \frac{1}{\delta} \, E^{q}_{\mathrm{Q}(0)}(x,\xi,t;P^{3}) = \int_{-\infty}^{\infty} dx \, E^{q}_{\mathrm{Q}(3)}(x,\xi,t;P^{3}) \end{split}$$

- corresponding relations for other GPDs (and PDFs)
- moments do not depend on P^3 (for f_1 see also, Radyushkin, 2018)

• Second moment of quasi-GPDs and Ji's spin sum rule

$$\int_{-\infty}^{\infty} dx \, x \, \frac{1}{\delta} \left(H_{Q(0)}^{q} + E_{Q(0)}^{q} \right) = \frac{1}{2} (\delta^{2} + 1) \left(A^{q}(t) + B^{q}(t) \right) + \frac{1}{2} (\delta^{2} - 1) D^{q}(t)$$
$$\int_{-\infty}^{\infty} dx \, x \left(H_{Q(3)}^{q} + E_{Q(3)}^{q} \right) = A^{q}(t) + B^{q}(t)$$

- A, B, D are form factors of energy momentum tensor - $A^{q}(0) + B^{q}(0) = J^{q}$
- Second moment of quasi-PDFs

$$\int_{-\infty}^{\infty} dx \, x \, \frac{1}{\delta_0} f_{1,Q(0)}^q = A^q(0) = \int_{-1}^1 dx \, x \, f_1^q(x) \qquad (\delta_0 = \delta|_{t=0})$$
$$\int_{-\infty}^{\infty} dx \, x \, f_{1,Q(3)}^q = A^q(0) - (\delta_0^2 - 1)\bar{C}^q(0)$$

• In general, for moments P^3 dependence either absent or calculable; moment relations may help to study systematics of LQCD calculations

Definition of Quasi-Distributions and Symmetry in ξ

- Moment analysis and definition of quasi-distributions
 - analysis suggests preferred definition of quasi-PDFs and quasi-GPDs

$$\tilde{f}_{1,\mathbf{Q}(0)} \equiv \frac{1}{\delta_0} f_{1,\mathbf{Q}(0)} \qquad \quad \tilde{g}_{1,\mathbf{Q}(3)} \equiv \frac{1}{\delta_0} g_{1,\mathbf{Q}(3)} \qquad \quad \tilde{h}_{1,\mathbf{Q}(0)} \equiv \frac{1}{\delta_0} h_{1,\mathbf{Q}(0)}$$

- so far, most of the literature used $f_{1,{
 m Q}(0)}$, $g_{1,{
 m Q}(3)}$, $h_{1,{
 m Q}(0)}$
- strictly speaking, both definitions suitable since difference is power-suppressed
- for instance: $\delta_0(P^3 = 1 \,{\rm GeV}) = 1.37$
- Symmetry of quasi-GPDs under $\xi \rightarrow -\xi$
 - behavior of standard GPDs (based on hermiticity and time-reversal)

 $X(x, -\xi, t) = +X(x, \xi, t)$ for all leading-twist quark GPDs X but \widetilde{E}_T $\widetilde{E}_T(x, -\xi, t) = -\widetilde{E}_T(x, \xi, t)$

- corresponding quasi-GPDs have the exact same behavior
- ξ -symmetry may be exploited in LQCD calculations

Summary

- Partonic quasi-distributions have attracted enormous interest; first encouraging LQCD results exist
- Quasi-GPDs in scalar diquark model
 - for $P^3 \rightarrow \infty$, all quasi-GPDs agree with respective standard GPDs
 - for $P^3\gtrsim 2\,{
 m GeV}$, quasi-GPDs are close to standard GPDs in wide x range
 - large discrepancies btw quasi and standard GPDs at large x, issue tends to become more severe as ξ increases
 - for large ξ , good agreement btw quasi and standard GPDs in ERBL region
- Model-independent results
 - quasi-GPDs can be computed for standard skewness ξ , but different skewness variables possible
 - (lowest) moments of quasi-distributions have no or calculable P^3 dependence
 - moment analysis suggests preferred definition for several quasi-distributions
 - quasi-GPDs and standard GPDs have same behavior under $\xi
 ightarrow -\xi$