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Quasi-PDFs
(→ talks by Constantinou, Monahan, Steffens, Ebert, Engelhardt, Richards, Zhao, ...)

• Standard (light-cone) unpolarized quark PDF (support: −1 ≤ x ≤ 1)
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– correlator depends on time t = z
0

= 1√
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− → cannot be computed in LQCD

• Suggestion: consider quasi-PDF instead (Ji, 2013) (support: −∞ < x <∞)
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– correlator depends on position z
3 → can be computed in LQCD

– quasi-PDF depends on x = k
3
/P

3
, and on hadron momentum P

3

– quasi-PDF and standard PDF contain same IR physics, but different UV physics

– at large P
3
, difference in UV behavior is dealt with via perturbative matching

(e.g., Xiong, Ji, Zhang, Zhao, 2013 / Stewart, Zhao, 2017 / Izubuchi, Ji, Jin, Stewart, Zhao, 2018)

– LQCD calculations at finite P
3 → power corrections



• Generic structure of matching formula (scale-dependence omitted)
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– C is matching coefficient (presently known to one-loop order)

– several works on power corrections available

– quasi-PDFs can be considered as “good lattice cross section” (Ma, Qiu, 2014)

(means “good lattice observable”)

• Choosing γ
0

(instead of γ
3
) for unpolarized quasi-PDF (Radyushkin, 2016)

f1,Q(0)(x, P
3
) =

1

2

∫
dz

3

2π
e
ik · z 〈P |ψ̄(−z

2) γ
0WQ(−z

2,
z
2)ψ(z2)|P 〉

∣∣∣
z
0
=0,~z⊥=~0⊥

– in principle, any linear combination of γ
3

and γ
0

would work (except γ
−

)

– f1,Q(0) better behaved w.r.t. renormalization (Constantinou, Panagopoulos, 2017)

• Several other suggestions for computing PDFs and related quantities;

some of them were proposed before quasi-PDFs and/or are related to quasi-PDFs

(Braun, Müller, 2008 / Ma, Qiu, 2014 / Radyushkin, 2017 / ...)



Definition of (Quasi-) GPDs

• GPD correlator: graphical representation
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• (Light cone) correlator for standard GPDs of quarks
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correlator parameterized through GPDs X(x, ξ, t)
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• (Spatial) correlator for quasi-GPDs of quarks (Ji, 2013)

F
[Γ]
Q (x,∆;P

3
) =

1

2

∫
dz

3

2π
e
ik · z 〈p′|ψ̄(−z

2) ΓWQ(−z
2,

z
2)ψ(z2)|p〉

∣∣∣
z
0
=0,~z⊥=~0⊥

• Definition of twist-2 vector quasi-GPDs HQ and EQ
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ū(p

′
)

[
γ

3
HQ(3) +

iσ
3µ

∆µ

2M
EQ(3)

]
u(p)

– we have explored both definitions of quasi-GPDs

– in forward limit, definitions of quasi-GPDs reduce to most frequently used

definitions of quasi-PDFs

– quasi-GPDs depend on
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Why Studying Quasi-GPDs ?

• Non-trivial behavior of quasi-GPDs at x = ± ξ ?

• Extraction of GPDs from experimental data is difficult

– very recent example

(Moutarde, Sznajder, Wagner, 2019)

– real and imaginary part of Compton form factor H using neural network approach

– at present, errors are still (very) large

• In the future, combination of experimental data (also from EIC) and input from

LQCD may be used to pin down GPDs



Available Studies on Quasi-GPDs

• Matching calculations for quasi-GPDs

(Ji, Schäfer, Xiong, Zhang, 2015 / Xiong, Zhang, 2015 /

Liu, Wang, Xu, Zhang, Zhang, Zhao, Zhao, 2019)

• Model calculations, etc

(Bhattacharya, Cocuzza, AM, 2018, 2019)

• Exploratory LQCD calculation for pion

(Chen, Lin, Zhang, 2019)

– calculation of H for π
+

for uval − dval

– calculation for ξ = 0 and mπ = 310 MeV



Diquark Spectator Model

• Idea: describe spectator partons as diquarks (of spin-0 or spin-1)

(e.g., Jakob, Mulders, Rodrigues, 1997)

• Graphical representation of two-quark correlator

• Often phenomenological nucleon-quark-diquark vertices with form factors used

• Previous studies of quasi-PDFs in diquark spectator model

(Gamberg, Kang, Vitev, Xing, 2014 / Bacchetta, Radici, Pasquini, Xiong, 2016)

• We use scalar diquark model (SDM)
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• Cut-graph (diquark on-shell) can be used to compute PDFs, but care has

to be taken for quasi-PDFs (Bhattacharya, Cocuzza, AM, 2018)



Analytical Results in Scalar Diquark Model

• Considered all eight leading-twist quark GPDs

• For standard GPDs, agreement with results extracted from calculation of GTMDs

(Meißner, AM, Schlegel, 2009)

• Correlator for quasi-GPDs
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• Quasi-GPDs are continuous at x = ± ξ (even beyond leading twist);

differs from (higher-twist) GPDs

(Aslan, Burkardt, Lorcé, AM, Pasquini, 2018 / Aslan, Burkardt, 2018)

• For P
3 →∞, all quasi-GPDs reduce to corresponding standard GPDs



Numerical Results in Scalar Diquark Model

• Parameter choice

– coupling (exact value of g irrelevant for our purpose)

g = 1

– masses must satisfy M < ms +mq; we mostly use

ms = 0.7GeV mq = 0.35GeV

values similar to previous work (Gamberg, Kang, Vitev, Xing, 2014)

“optimal choice” for minimizing difference btw quasi and standard distributions

– momentum transfer

|~∆⊥| = 0

– cutoff for k⊥ integration

Λ = 1GeV

– variations of |~∆⊥| and Λ do not affect general results

– using form factor (rather than k⊥ cutoff) does not affect general results



• Quasi-PDFs
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– for larger P
3

(& 2 GeV), quasi-PDFs are close to f1 in wide x range

– for larger P
3
, not much difference between f1,Q(0) and f1,Q(3);

this is general feature for all cases

– considerable discrepancies between quasi-PDFs and f1 at large x

(compare also, Gamberg, Kang, Vitev, Xing, 2014)

– considerable discrepancies between quasi-PDFs and f1 at small x

f1 is discontinuous at x = 0 (f1(x < 0) = 0)

quasi-PDFs are continuous at x = 0 and must change rapidly around x = 0

discontinuity is probably not a model artifact (f
q
1 (x < 0) = −f q̄1 (x > 0))



• Relative difference for quasi-PDFs
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– relative difference makes discrepancies very explicit (especially at large x)

– for P
3 & 2 GeV, good results for 0.1 < x < 0.8

– at large x, problem partly due to mismatch btw k
+
/P

+
and k

3
/P

3
for finite P

3

– calculations of quasi-PDFs in LQCD also lead to discrepancies (at large x)



• Quasi-GPDs: sample plots
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– for larger P
3

(& 2 GeV), quasi-GPDs are close to standard GPDs in wide x range;

agreement can depend on ξ

– considerable discrepancies between quasi and standard GPDs for large x;

issue tends to become more severe as ξ increases

– qualitatively, similar results for all leading-twist GPDs



• Quasi-GPDs in ERBL region
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– standard (twist-2) GPDs are continuous in entire x range (unlike PDFs)

– for small ξ, large discrepancies between quasi and standard GPDs in ERBL region

(compare region around x = 0 for PDFs)

– for large ξ, good agreement btw quasi and standard GPDs in large part

of ERBL region→ potentially nice opportunity for LQCD calculations



Parton Momenta and Power Corrections

• Recall: parton momentum fractions of standard and quasi PDFs are different;

no model-independent relation btw momentum fractions

• Relation in SDM in cut-graph approximation (see also, Gamberg, Kang, Vitev, Xing, 2014)
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– difference btw x̃ and x is power correction, but x̃− x→∞ as x→ 1

– some numerics
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– improved results at (very) large x if one distinguishes btw x̃ and x

– other power corrections prevent further improvement



Skewness and Power Corrections

• Quasi-GPDs can be computed using standard skewness ξ

• Other definitions for skewness could be used. Examples:
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∆
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– δ describes power correction, but diverges as ξ → 1

– some numerics

Δ⊥= 0 GeV P3= 2 GeV

ξ
˜
0≠ξ

ξ
˜
3≠ξ

ξ
˜
=ξ

0.2 0.4 0.6 0.8 1.0
ξ

1

2

3

4

ξ
˜

P3=1 GeV ms=0.7 GeV mq=0.35 GeV

ξ=0.4

ξ
˜
3=0.4

ξ
˜
0=0.4

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0
x

-4

-3

-2

-1

1

R H (0)

– different skewness variables can lead to considerable differences

– which skewness variable works best depends on x and GPD



Moments of Quasi-Distributions and Spin Sum Rule

• Lowest moment
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– corresponding relations for other GPDs (and PDFs)

– moments do not depend on P
3

(for f1 see also, Radyushkin, 2018)



• Second moment of quasi-GPDs and Ji’s spin sum rule
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– A, B, D are form factors of energy momentum tensor
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• Second moment of quasi-PDFs
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• In general, for moments P
3

dependence either absent or calculable;

moment relations may help to study systematics of LQCD calculations



Definition of Quasi-Distributions and Symmetry in ξ

• Moment analysis and definition of quasi-distributions

– analysis suggests preferred definition of quasi-PDFs and quasi-GPDs

f̃1,Q(0) ≡
1

δ0

f1,Q(0) g̃1,Q(3) ≡
1

δ0

g1,Q(3) h̃1,Q(0) ≡
1

δ0

h1,Q(0)

– so far, most of the literature used f1,Q(0), g1,Q(3), h1,Q(0)

– strictly speaking, both definitions suitable since difference is power-suppressed

– for instance: δ0(P
3

= 1 GeV) = 1.37

• Symmetry of quasi-GPDs under ξ → −ξ
– behavior of standard GPDs (based on hermiticity and time-reversal)

X(x,−ξ, t) = +X(x, ξ, t) for all leading-twist quark GPDs X but ẼT

ẼT (x,−ξ, t) = − ẼT (x, ξ, t)

– corresponding quasi-GPDs have the exact same behavior

– ξ-symmetry may be exploited in LQCD calculations



Summary

• Partonic quasi-distributions have attracted enormous interest;

first encouraging LQCD results exist

• Quasi-GPDs in scalar diquark model

– for P
3→∞, all quasi-GPDs agree with respective standard GPDs

– for P
3 & 2 GeV, quasi-GPDs are close to standard GPDs in wide x range

– large discrepancies btw quasi and standard GPDs at large x,

issue tends to become more severe as ξ increases

– for large ξ, good agreement btw quasi and standard GPDs in ERBL region

• Model-independent results

– quasi-GPDs can be computed for standard skewness ξ,

but different skewness variables possible

– (lowest) moments of quasi-distributions have no or calculable P
3

dependence

– moment analysis suggests preferred definition for several quasi-distributions

– quasi-GPDs and standard GPDs have same behavior under ξ → −ξ


