

Fragmentation Function measurements in Belle

Evolution2019, May 15, Argonne

Ralf Seidl (RIKEN)

Fragmentation functions and spin structure of the nucleon

- Unpolarized fragmentation functions:
 - Provide flavor information in nucleon
 - Most apparent in SIDIS measurements related to Δq(x)
 - But also required for all RHIC hadron asymmetries (especially pion A_{LL} charge ordering)
 - Transverse momentum dependence needed for Sivers and other TMDs

- Polarized fragmentation functions:
 - For transverse spin almost unique access (require two chiral-odd functions):
 - DY: δq x δq or
 - SIDIS/RHIC: δq x Collins or δq x IFF
 - FFs from Belle/Babar

Access to FFs

SIDIS:
$$\sigma^{h}(x, z, Q^{2}, P_{h\perp}) \propto \sum e_{q}^{2}q(x, p_{t}, Q^{2})D_{1,q}^{h}(z, k_{t}, Q^{2})$$

- Relies on unpol PDFs
- Parton momentum known at LO
- Flavor structure directly accessible
- Transverse momenta convoluted between FF and PDF

pp:

$$\sigma^{h}(P_{T}) \propto \int_{x_{1}, x_{2}, z} \sum_{a, a' \in q, g} f_{a}(x_{1}) \otimes f_{a'}(x_{2}) \otimes \sigma_{aa'} \otimes D_{1, q}^{h}(z)$$

- Relies on unpol PDFs
- leading access to gluon FF
- Parton momenta not directly known

• e+e-:

$$\sigma^{h}(z,Q^{2},k_{t}) \propto \sum_{q} e_{q}^{2} \left(D_{1,q}^{h}(z,k_{t},Q^{2}) + D_{1,\overline{q}}^{h}(z,k_{t},Q^{2}) \right)$$

- No PDFs necessary
- Clean initial state, parton momentum known at LO
- Flavor structure not directly accessible

Belle Detector and KEKB

- Asymmetric collider
- 8GeV e⁻ + 3.5GeV e⁺
- √s = 10.58GeV (Y(4S))
- $e^+e^- \rightarrow Y(4S) \rightarrow B \overline{B}$
- Continuum production: 10.52 GeV
- e⁺e⁻→q q (u,d,s,c)
- Integrated Luminosity: >1000 fb⁻¹
- >70fb⁻¹ => continuum

TOF counter

Good tracking and particle identification! R $\epsilon(K) \sim 85\%$, Si vtx. det. $\epsilon(\pi \rightarrow K) < 10\%$ 3/4 lyr. DSSD **Central Drift Chamber** small cell +He/C₂H₆

KEN

 μ / K_L detection 14/15 lyr. RPC+Fe

EIC without B factory input? Very unlikely

- Very limited helicity analysis possible (based on Kretzer or KKP)
- Only model dependent Tensor charge extraction
- Sivers and all TMDs just with naïve Gaussian dependence (no x or z dependence)

Transverse momentum dependence

Aka un-integrated PDFs and FFs

5/15/2019

R.Seidl: e+e- Fragmentation

K_T Dependence of FFs in e+e-

- Gain also sensitivity into transverse momentum generated in fragmentation
- Two ways to obtain transverse momentum dependence
 - Traditional 2-hadron FF
 - Juse transverse momentum between two hadrons (in opposite hemispheres)
 - \rightarrow Usual convolution of two transverse momenta
 - Single-hadron FF wrt to Thrust or jet axis
 - No convolution
 - \rightarrow Need correction for $q\bar{q}$ axis (similar to a Jet function)

Thrust definition

• Event shape variable thrust is defined as:

 $T \stackrel{max}{=} \frac{\sum_{h} |\mathbf{P}_{h} \cdot \hat{\mathbf{n}}|}{\sum_{h} |\mathbf{P}_{h}|}$

- All final-state particles are included in the sum
- A two-jet-like event has a high thrust value
- A completely spherical event has a thrust value of 0.5

 Thrust axis n also defines the hemispheres

5/15/2019

Thrust distributions (lin and log)

Correction chain

Correction	Method	Systematics			
PID mis-id	PID matrices (5x5 for cos θ_{lab} and p_{lab})	MC sampling of inverted matric element uncertainties, variation of PID correction method			
Momentum smearing	MC based smearing matrices (2160x2160), SVD unfold	SVD unfolding vs analytically inverted matrix, reorganized binning, MC statistics			
Non-qqbar BG removal	eeuu, eess, eecc, tau MC subtraction	Variation of size, MC statistics			
Acceptance I (cut efficiency)	In barrel reconstucted vs udsc generated in barrel	MC statistics			
Acceptance II	udsc Gen MC barrel to 4π	MC statistics, variation in tunes			
Weak decay removal (optional)	udcs check evt record for weak decays	Compare to other Pythia settings			
ISR	ISR on vs ISR off in Pythia	Variatons in tunes			

6 thrust bins [0.5,0.7,0.8,0.85,0.9,0.95,1.0] x 18 z bins x 20 kt bins

5/15/2019

R.Seidl: e+e- Fragmentation

Total corrections impact

Most of the following slides display 0.85 < T< 0.9 Thrust bin

11

ISR correction

All different tunes very similar except old Belle tune \rightarrow assigned as systematics -high P_{hT} drop of ratio due to ISR boost

12

Overall systematic uncertainties

Systematic uncertainties dominated by acceptance correction (for different tunes), PID uncertainties and ISR correction

13

Cross sections various hadrons

14

6

Fits vs P_{hT}^2

Fit exponential to smaller transverse momenta for Gaussian P_{hT} dependence and power low at higher P_{hT}

SIKEN

15

5/15/2019

Gaussian widths

first direct (no convolutions) measurement of z dependence of Gaussian widths

5

Gaussian widths, thrust dependence

Gaussian widths get narrower with higher Thrust

Gaussian widths comparison to MC

first direct (no convolutions) measurement of z dependence of Gaussian widths

Ongoing work: two-hadron transverse momentum

- Analysis ongoing (Anselm/Charlotte)
 - Differential in z₁,z₂ and q_t for pion and kaon combinations
 - All the correction steps (PID, smearing, nonqqbar,acceptance, ISR) similar to recent Belle FF analyses

Single Λ polarization measurements

- Related to open question about Λ polarization in hadron collisions from 40 years ago!
- Fragmentation counterpart to the Sivers Function:

unpolarized parton fragments into transversely polarized baryon with transverse momentum wrt to parton direction

• Reconstruct Λ , its transverse momentum and polarization

YingHui Guan (Indiana/KEK): PRL 122 (2019), 042001

Transverse momentum dependence

- Different behavior for low and high-z :
- At low z small
- At intermediate z falling Polarization with kt
- At high z increasing polarization with kt

Opposite hemisphere pion correlation

- Interesting z_{π} and z_{Λ} dependence :
- At low z_{Λ} light quark fragmentation dominant, some charm in $\pi^{-} \rightarrow$ different signs
- At high z_Λ strange + charm fragmentation more relevant → same signs

5/15/2019

Ongoing work: Collins multidimensional analysis and Kaon combinations

- Currently revisiting kaon combinations of the Collins asymmetries previously done by Francesca
- While doing so, try to perform a full multidimensional analysis:
 - Currently (for testing):
 - 6 (z₁) x 6 (z₂) x 4(k_{t1}) x 4(k_{t2}) x 1 (costheta) x 8 (phi)
 - 6 (z₁) x 6 (z₂) x 10(q_t) x 1 (costheta) x 8 (phi)

- Consider 5 k_t bins and several costheta bins after successful test (ongoing)
- Use most correction steps similar to recent analyses (PID, smearing, non-qqbar removal, acceptance?, ISR?)
- To simplify smearing unfold each z₁-z₂ bin separately (z smearing almost nonexistent)

23

Other ongoing work

- Di-hadron transverse momentum dependent fragmentation
- Update of z₁ z₂ dependent di-hadron fragmentation (PRD) using additional z definitions and better ISR correction
- Multi-dimensional analysis of Collins asymmetries for pion and kaon combinations
- Neutral pion and eta Collins
- Other exploratory work (FFs using ISR, hadron in jets, etc)

New possibilities: other final state FFs needed?

- Extension of di-hadron analysis to any resonant hadron possible:
 - Κ_s, Κ*,φ, ρ, etc
- πK and KK IFF measurements
- Other Collins measurements?

- Especially rho mesons might be of interest for explaining the muon discrepancy in cosmic air shower models
- Explicitly study scale dependence of kt dependent FFs using ISR photons

25

Summary

- P_{hT} dependent cross sections and Gaussian widths extracted
 - Very clear z dependence of widths, not as assumed by phenomenologists
 - Pions and kaons similar, protons narrower (diquarks?)
- Lambda polarization paper finally published
- More Belle measurements ongoing (di-hadron kt, Collins)

Fits vs P_{hT}^2

Fit exponential to smaller transverse momenta for Gaussian P_{hT} dependence and power low at higher P_{hT}

28

5/15/2019

PID correction

Using Martin Leitgab's 5x5 PID matrices in fine 17 x 9 P_{lab} x cos θ_{lab} binning

SIKEN

Smearing

- Reduced smearing matrices from 2160 x 2160 to filled (ie kinematically reachable bins)
- Using SVDUnfold Method in Root

Non-qqbar removal:

Remove all two-photon and tau events from yields, contributions generally up to several %, slightly higher for kaons rand low thrust

31

Stacked, relative contributions

Acceptance correction

ACCI:Reconstruction and efficiency correction in Barrel acceptance ACCII: Barrel to 4π correction

33

Weak correction(optional)

Traced in gen MC hadrons back to mothers with non ud content \rightarrow if not vetoed (K*, ssbar, ccbar resonances, some hyperons and excited states) \rightarrow Weak

Differences in Pythia/JetSet settings

Par	0	1	9	10	11	12	13	udscatlas	udschermes
	Pythia def.	belle	Atlas	Aleph	LEP/tev.	Hermes	gen Belle		
PARJ(1)	0.1			0.106	0.073	0.029			0.029
PARJ(2)	0.3			0.285	0.2	0.283			0.283
PARJ(3)	9.4			0.71	0.94	1.2	\frown		1.2
PARJ(4)	0.05			0.05	0.032				
PARJ(11)	0.5			0.55	0.31				
PARJ(12)	0.6			0.47	0.4				
PARJ(13)	0.75			0.65	0.54				
PARJ(14)	0.0	0.0	0.0	0.02	0.0	0.0	0.05	0.0	0.0
PARJ(15)	0.0	0.0	0.0	0.04	0.0	0.0	0.05	0.0	0.0
PARJ(16)	0.0		0.0	0.02	0.0	0.0	0.05	0.0	0.0
PARJ(17)	0.0	0.0	0.0	0.2	0.0	0.0	0.05	0.0	0.0
PARJ(19)	1			0.57					
PARJ(21)	0.36			0.37	0.325	0.400	0.28	0.28	0.400
PARJ(25)	1				0.63		0.27	0.27	
PARJ(26)	0.4			0.27	0.12		0	0	
PARJ(33)	0.8		0.8	0.8	0.8	0.3		0.8	0.8
PARJ(41)	0.3			0.4	0.5	1.94	0.32	0.32	1.94
PARJ(42)	0.58			0.796	0.6	0.544	0.62	0.62	0.544
PARJ(45)	0.5					1.05			1.05
PARJ(46)	1.						1.0	1.0	
PARJ(47)	1.				0.67				
PARJ(54)	-0.050	-0.040	-0.050	-0.04	-0.050	-0.050		-0.050	-0.050
PARJ(55)	-0.005	-0.004	-0.005	-0.0035	-0.005	-0.005		-0.005	-0.005
PARJ(81)	0.29			0.292	0.29		0.38	0.38	
PARJ(82)	1.0			1.57	1.65		0.5	0.5	
MSTJ(11)	4			3	5		4	4	
MSTJ(12)	2			3		1			1
MSTJ(26)	2	0	2	2	2	2	0	2	2
MSTJ(45)	5					4			4
MSTJ(107)	0	1	0	0	0	0	1	0	0

VM suppression P_x,P_y Gauss width Lund params

 Λ_{QCD} and E cutoff

35

Pythia/Jetset parameters

PARJ(1)	:	Diquark suppression relative to quark antiquark production
PARJ(2)	:	Strangeness suppression relative to u or d pair production
PARJ(3)	:	Extra suppression of strange diqurks relative to strange quark production
PARJ(4)	:	Axial (ud_1) vs scalar (ud_0) diquark suppression
PARJ(11)	:	Light meson with spin 1 probability
PARJ(12)	:	Strange meson with spin 1 probability
PARJ(13)	:	Charm meson with spin 1 probability
PARJ(14)	:	Spin 0 meson with $L = 1$ and $J = 1$ probability
PARJ(15)	:	Spin 1 meson with $L = 1$ and $J = 0$ probability
PARJ(16)	:	Spin 1 meson with $L = 1$ and $J = 1$ probability
PARJ(17)	:	Spin 1 meson with $L = 1$ and $J = 2$ probability
PARJ(19)	:	Extra baryon suppression relative to regular diquark suppression (if $MSTJ(12) = 3$)
PARJ(21)	:	Gaussian Width of p_x and p_y for primary hadrons
PARJ(25)	:	η production suppression factor
PARJ(26)	:	η' production suppression factor
PARJ(33)	:	Energy cutoff of fragmentation process
PARJ(41)	:	Lund a parameter: $(1-z)^a$
PARJ(42)	:	Lund b parameter: $exp(-bm_{\perp}^2/z)$
PARJ(45)	:	addition to a parameter for diquarks
PARJ(46)	:	modification of Lund fragmentation for heavy quarks with Bowler, charm, bottom
PARJ(47)	:	modification of Lund fragmentation for heavy quarks with Bowler, bottom
PARJ(54)	:	charm fragmentation functional form and value if $MSTJ(11) = 2$ or 3
PARJ(55)	:	bottom fragmentation functional form and value if $MSTJ(11) = 2$ or 3
PARJ(81)	:	Λ_{QCD} for parton showers
PARJ(82)	:	invariant mass cut-off for parton showers

5/15/2019

6

Z smearing (integrating over ktbins)

Thrust smearing (integrating over z and kt bins)

40

Flavor, in medium FF

6

RIKEN

Hyperon Fragmentation

- Hyperons similar to light hadron fragmentation \rightarrow peaking at low z (x_p)
- Baryon production not too well described by Pythia 6 default settings

Flavor, in medium FF

RIKEN

Charmed baryon Fragmentation

Belle: Niiyama et. al. PRD 97 (2018), 072005

- Charmed baryons carry large fraction of parton momentum, similar to charmed mesons
- Charmed fragmentation reasonably described in Pythia for main states
 S/15/2019
 R.Seidl: e+e- Fragmentation
 42

Baryon production rates

- First feed-down corrected production rates extracted
- No $\Lambda(1520)$ enhancement seen
- Strangeness suppression seen for hyperons:

$$\frac{\sigma(S=-1)}{(2J+1)} > \frac{\sigma(S=-2,-3)}{(2J+1)}$$

• Difference in slopes for Λ_c and Σ_c in support of diquark production picture (spin 1 diquarks suppressed)

Flavor, in medium FF

Charmed Fragmentation

PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)

- Heavier particles generally plotted vs normalized momentum $x_p = \frac{P^h}{P_{max}^h}$
- Unlike light hadrons charmed hadrons contain large fraction of charm quark momentum

44

Belle fragmentation

- Initially started by RBRC fellow M. Perdekamp (now UIUC), A. Ogawa (BNL) and S. Lange (now U Giessen)
- Continued by RCS with additional help from UIUC (Matthias) and IU/Duke (A. Vossen) and JSPS

New possibilities: From Correcting ISR to using it as a tool

- During di-hadron analysis and kt analysis successfully checked actual boost of qqbar pair in ISR events
- General Idea: Use photons reconstructed in Belle(2) to tune the reduced sqrt(s) and scale of the fragmenting qqbar system
- Belle(2) acceptance covers a larger range with EM Calorimetry than for tracking -> good at catching not too soft photons
- First test: use all photons that cannot be combined with another photon to be close to the π^0 (0.1-0.17) or η (0.5-0.6) mass range

CMS energy of the qqbar system

reduced CMS energy

Possible improvements:

- Correlation w/ angle to the thrust axis
- Small angles to the beam directions
- Mostly from the higher energy beam
- Total reconstructed energy

5/15/2019

- Remove detected photon(s), E>0.5GeV from system
- Correlation to true CMS energy seen

