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Hadron as a many-body parton system

¢ Interacting with external probe the hadron reveals
different types of parton dynamics

e There is a strong correlation between different
phases

e The dense QCD medium strongly interacts with the
probe in dynamical way

e Using methods of perturbative QCD we can obtain
very precise information on the structure hadron as
a many-body parton system
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Factorization and different types of dynamics

e Separation of different phases is
based on TMD factorization
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TMD distributions and scale parameters
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e We look at interaction between different phases using methods of pQCD

¢ |Interaction of perturbative and non-perturbative phases can be described through
evolution equations

e Dependence of TMD distributions on scales can be found by analysis of perturbative
emission in the non-perturbative background

e Anomalous dimensions are known up to three loops

¢ The fitting of distributions is highly constrained due to strong correlation between
perturbative and non-perturbative phases

e We check our predictions for properties of the hadron as many body parton system



Background field method

Sveep (A, B) = Sgep(A + B) — Sgep(B)

e We can separate different phases of the many body parton system at the level
of the QCD Lagrangian

e The method provides a consistent way to take into account interaction of the
perturbative phase with a non-perturbative background (many body
interactions)

e We can precisely describe interaction between phases using expansions in the
background field

e We can can consider different types of interaction with the non-perturbative
parton system




Power corrections to TMD factorization

|| TMD factorization Collinear factorization
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e With certain approximations the structure of corrections gets a very simple form

e We estimate that effects become important at ¢, ~ ZQ

¢ This result is in agreement with phenomenological studies

e The method can be used for analysis of factorization breaking effects in polarized
observables



Solution of evolution equations
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e Evolution equations predict how the non-perturbative system evolves from one scale
to another. We can predict this transition with very high accuracy from pQCD.

e There are non-perturbative effects in the evolution as well
e TMD distribution is a complex function which is difficult to extract

¢ |nitial condition can be defined by the collinear distributions



TMD vs. collinear distributions

F(x,b;Cr,pr) = F(x,0;Ci, pi) exp { /

L

e Collinear distributions can be used as an initial condition for TMD evolution
¢ |In the region of small transverse separation they should coincide

¢ Using calculations in the background field we can construct projection of
TMDs onto collinear distributions

e This is another example of how perturbative QCD defines the non-
perturbative structure



Operator definition
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z1n + b

20 I e We start our derivation from the operator
zon — b _ . which generates Sivers function, but the
method can be applied to an operator of

arbitrary structure

e Emission at the NLO level is analyzed in
the limit of small b where TMDs match
collinear distributions




Collinear matching
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e We construct expansion of the TMD operator onto collinear operators of twist two and
three

e The expansion is defined by matching coefficients which we want to find

e The matching coefficients depend on two types of logarithms
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Diagrams

e There are both quark-quark and quark-gluon channels

e We use the light-cone gauge for the background field and background-Feynman
gauge for the perturbative phase



Diagram A

e The matching formula can be obtained by expansion of the NLO diagramming the
transverse space

¢ |t is natural to perform expansion onto a straight line between emission and
absorption points

EM(u) = a(zont — b*) + a(on” + b#)



Rapidity divergence

N "\ %,
Uy = 2a;CpT(— bQE/ da/ E nzl)*er%q(nzg‘a)

e We observe rapidity divergence at o — ()
¢ Regularization is performed using rapidity regulator

¢ It can be introduced by redefinition of Wilson lines
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Delta regulator
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* The regulator passes unchanged into the rapidity divergent diagram A
e Logarithm of 0 represents rapidity singularity
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Final result for diagram A
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e After implementation of the rapidity regulator the diagram becomes finite
e Diagram A is the only diagram with rapidity divergence

¢ |t has both twist-2 and twist-3 contributions
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Collinear operators
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® There are three quark and two gluon operators
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TMD vs. collinear distributions
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¢ The result of calculation gives

us connection between TMD

and collinear distributions .
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Bare result
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b2 e The result has a structure of the matching formula
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in the transverse space

e The result depends on rapidity and UV regulators
and should be renormalized



Renormalization
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e We multiply the bare result by renormalization constants: wave-function
renormalization, TMD renormalization and rapidity renormalization

e The form of the constants is know though their explicit form depends on the
regularization scheme



Rapidity renormalization and the soft factor

Ry(b; 1, ¢) = S™2(b; 1, €)

e An explicit form of renormalization constants is defined by the
regularization scheme in use

e The rapidity renormalization factor is given by the soft function




Renormalization constants

¢ Rapidity renormalization constant
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e UV renormalization constants
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e Dependence on regularization parameters in our matching
formula vanishes when we multiply it by the renormalization
constants



Matching formula
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e Dependence on regularization parameters in our matching
formula vanishes when we multiply it by the renormalization
constants

e Both the collinear function and the matching coefficient
depend on the UV scale

e The coefficient depends on rapidity renormalization scale



Matching formula for the unpolarized distribution
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e There are leading order (LO) and next-to-leading (NLO) parts

e Matching at LO is simple and is given by the unpolarized
collinear distribution

e The first term of the NLO part is given by the DGLAP evolution
kernel

e The second term originates in the rapidity divergence
e The third term is a finite, logarithm independent part

e This formula is in agreement with known results, which
provides a consistency check
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Matching formula for the Sivers function
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e The structure of the matching formula for Sivers function is similar
e Matching at LO is simple and is given by the ETQS (Efremov-Teryaev-Qui-Sterman) distribution

e The first term of the NLO part is given by the collinear evolution for the twist-3 ETQS. The second
term originates in the rapidity divergence. The third term is a finite, logarithm independent part

e This formula is in agreement with known results
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Collinear matching

fl_LT;q<—h;DY (CE, ba My C) — 7TT(—£E, 07 LU) + Tas (/'L)

7T2

—2L,P®T + Cr (-Li +21cL, + 3L, — F) T(-z,0, )

+/d€/01 dyo(x — yf)[ (CF — %) 25T (—€,0,€) + 3g§ G1(—¢€,0,8 z G_(—g,o,g)]}

. Scimemi, A. Tarasov, A. Vladimirov, arXiv:1901.04519

e We derive matching coefficient for the Sivers function
at the next-to-leading order

I b e We use background field method to calculate emission
in the many body parton background

e We perform expansion in powers of b

e The structure of the result is dictated by strong
interaction between perturbative and non-perturbative
phases

e It is easy to generalize calculation to other operators
and matrix elements (Collins function)

e The results will be implemented in extraction of the
Sivers function



