Hadron form factors and moments of parton distribution functions

Constantia Alexandrou University of Cyprus and The Cyprus Institute

Outline

- Electromagnetic form factors
- Axial form factors
- Momentum fraction of quarks
- Spin content

Status of simulations

Size of labels proportional to Lm_{π}

Algorithmic improvements

- Utilize leadership computers
- Develop fast scalable codes by exploiting different computer architectures and new algorithms e.g. one bottleneck is critical slow down due to condition number of the Dirac matrix → use deflation or multi-grid

Algorithmic improvements

- Utilize leadership computers
- Develop fast scalable codes by exploiting different computer architectures and new algorithms e.g. one bottleneck is critical slow down due to condition number of the Dirac matrix → use deflation or multi-grid

Impact on major experiments world-wide

Overview of the lattice QCD computation

Pion electric form factor

A lot of progress has been achieved in recent years.

E.g. the Extended Twisted Mass Collaboration (ETMC) used several $N_f = 2$ ensembles including one at physical pion mass to extrapolate to infinity volume at a given value of the lattice spacing a $\frac{v_{e_s,\hat{\sigma},\hat{\sigma},\hat{\sigma}}}{v_{e_s,\hat{\sigma},\hat{\sigma},\hat{\sigma}}}$

$$\left\langle \pi^+(\vec{p'}) | V_\mu(0) | \pi^+(\vec{p}) \right
angle = (p'_\mu + p_\mu) F_\pi(Q^2)$$

Twisted b.c. allows to reach small Q^2 values

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Pion charge radius

 $\langle r^2 \rangle_{\pi} = 0.443 \ (21)_{stat} \ (7)_{ratio} \ (1)_{fit-range} \ (7)_{M_{\pi}} \ (6)_{ChPT} \ (15)_{FVE} \ (6)_{Q^2-range} \ fm^2$

$$\langle r^2 \rangle_{\pi} = 0.443 \ (21)_{stat} \ (20)_{syst} \ \text{fm}^2$$
 in agreement with $\langle r^2 \rangle_{\pi}^{exp.} = 0.452 \ (11) \ \text{fm}^2$

C. A., S. Bacchio, P. Dimopoulos, J. Finkenrath, R. Frezzotti, K. Jansen, B. Kostrzewa, M. Mangin-Brinet, F. Sanfilippo, S. Simula, C. Urbach, U. Wenger (ETMC), Phys. Rev. D97 (2018) 014508

Electromagnetic form factors

- Proton radius extracted from muonic hydrogen is 7.9 σ different from the one extracted from electron scattering, R. Pohl et al., Nature 466 (2010) 213
- Muonic measurement is ten times more accurate and a reanalysis of electron scattering data may give agreement with muonic measurement

Evaluation of matrix elements in lattice QCD

Various methods to ensure ground state dominance: plateau, two-state and summation methods \rightarrow all should agree

Volume effects on the electric form factor

Electric form factor using twisted mass clover improved fermion simulations at the physical point

Volume effects on the magnetic form factor

Magnetic form factor using twisted mass clover improved fermion simulations at the physical point

Disconnected contributions to the electric and magnetic form factors

Sampling of the fermion propagator using site colouring schemes, A. Stathopoulos, J. Laeuchli, K. Orginos, arXiv:1302.4018

 C. A., M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou and A. Vaquero Aviles-Casco. Phys. Rev. D96 (2017) 034503, arXiv:1706.00469;

• C. A., S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou and A. Vaquero Aviles-Casco, arXiv:1812.10311.

Proton and neutron electric and magnetic form factors

0.10 $N_f = 2 + 1 + 1$ $N_f = 2 + 1 + 1$ 1.0 ¥ ¥ Experiment Experiment 0.08 0.8 $9.0^{\mathrm{G}_{\mathrm{E}}^{\mathrm{D}}(\mathrm{C}^{2})}$ $(0.00^{-0.00})^{-0.00}$ 0.4 0.02 0.2 0.00 -0.2 *** 3.0 -0.42.5 -0.6 $^{8.0-}_{M} \overset{(0^{7})}{_{G}}$ -1.2 1.0 -1.4 0.5 -1.6 0.0∟ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.40.6 0.8 1.0 Q^2 [GeV²] Q^2 [GeV²]

Statistically accurate results are emerging

Deviation from experimental results under investigation, arising from e.g. finite volume and/or excited states C. A., S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou and A. Vaquero Aviles-Casco, arXiv:1812.10311.

Strange Electromagnetic form factors

Experimental determination: Parity violating e - N scattering HAPPEX experiment finds $G_M^s(0.62) = -0.070(67)$

PRELIMINARY

• $N_f = 2 + 1 + 1$, $m_{\pi} = 139(1)$ MeV, $64^3 \times 128$, a = 0.08, ETM collaboration

• Overlap valence on $N_f = 2 + 1$ domain wall fermions, $24^3 \times 64$, a = 0.11 fm, $m_{\pi} = 330$ MeV; $32^3 \times 64$, a = 0.083 fm, $m_{\pi} = 300$ MeV and 48^3 , a=0.11 fm, $m_{\pi} = 139$ MeV, R. S. Sufian *et al.* (χ QCD Collaboration) 1606.07075

ullet $N_f=2+1$ clover fermions, $m_\pi\sim 320$ MeV, , J. Green et al., Phys.Rev. D92 (2015) 31501

Nucleon axial charge

After a long-term effort g_A is emerging from lattice QCD.

Results on the axial form factors

$$\langle N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

Isovector

• ETMC using $N_f = 2 + 1 + 1$ twisted mass fermions, a = 0.08 fm, $64^3 \times 128$

Recent results on the isoscalar axial form factors

$$\langle N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_N^2}{E_N(\vec{p}')E_N(\vec{p})}}\bar{u}_N(p',s')\left(\gamma_{\mu}G_A(Q^2) - i\frac{Q_{\mu}}{2m_N}G_p(Q^2)\right)\gamma_5u_N(p,s)$$

Isoscalar

• ETMC using $N_f = 2 + 1 + 1$ twisted mass fermions, a = 0.08 fm, $64^3 \times 128$

Strange axial form factors

$$\langle N(p',s')|A_{\mu}|N(p,s)\rangle = i\sqrt{\frac{m_{N}^{2}}{E_{N}(\vec{p}')E_{N}(\vec{p})}}\bar{u}_{N}(p',s')\left(\gamma_{\mu}G_{A}(Q^{2}) - i\frac{Q_{\mu}}{2m_{N}}G_{p}(Q^{2})\right)\gamma_{5}u_{N}(p,s)$$

• ETMC using $N_f = 2 + 1 + 1$ twisted mass fermions, a = 0.08 fm, $64^3 \times 128$

Moments of PDFs

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p' and $p \rightarrow GPDs$, X. Ji, J. Phys. G24 (1998) 1181

$$F_{\Gamma}(x,\xi,q^{2}) = \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda} \langle p' | \bar{\psi}(-\lambda n/2) \Gamma \mathcal{P} e^{ig \int_{-\lambda/2}^{\lambda/2} d\alpha n \cdot A(n\alpha)} \psi(\lambda n/2) | p \rangle$$

where q = p' - p, $\bar{P} = (p' + p)/2$, *n* is a light-cone vector with and $\bar{P}.n = 1$ Expansion of the light cone operator leads to a tower of local operators $\mathcal{O}^{\mu\mu_1\dots\mu_n}$ \rightarrow Entails computing nucleon matrix elements of quark bilinears: $\langle N(p', s') | \mathcal{O}_{\Gamma}^{\mu_1\dots\mu_n} | N(p, s) \rangle$

Unpolarized:

$$\mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\gamma^{\{\mu}i\stackrel{\leftrightarrow}{D}{}^{\mu_{1}}\dots i\stackrel{\leftrightarrow}{D}{}^{\mu_{n}\}}\psi(x)$$

$$n = 0 : \rightarrow \langle 1 \rangle_q = g_V^q, \quad n = 1 : \rightarrow J^q = \frac{1}{2} \left[A_{20}^q(0) + B_{20}^q(0) \right]$$
 and $\langle x \rangle_q = A_{20}^q(0)$

Helicity:

$$\mathcal{O}_{A}^{\mu\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\gamma^{\{\mu}i\stackrel{\leftrightarrow}{D}{}^{\mu_{1}}\dots i\stackrel{\leftrightarrow}{D}{}^{\mu_{n}\}}\gamma_{5}\psi(x)$$

$$n = 0 : \rightarrow \langle 1 \rangle_{\Delta q} = \Delta \Sigma^q = g^q_A, \quad n = 1 : \rightarrow \langle x \rangle_{\Delta q} = \tilde{A}^q_{20}(0)$$

Transversity:

$$\mathcal{O}_{T}^{\nu\mu\mu_{1}\cdots\mu_{n}} = \bar{\psi}(x)\sigma^{\{\nu,\mu\}}i\stackrel{\leftrightarrow}{D}{}^{\mu_{1}}\cdots i\stackrel{\leftrightarrow}{D}{}^{\mu_{n}}\frac{\tau^{a}}{2}\psi(x)$$

$$n = 0 : \rightarrow \langle 1 \rangle_{\delta q} = g_T^q, \quad n = 1 : \rightarrow \langle x \rangle_{\delta q} = \tilde{\tilde{A}}_{20}^q(0)$$

Momentum fraction $\langle \mathbf{x} \rangle_{u-d}$

Preliminary

• $N_f = 2 + 1 + 1$ twisted mass fermions with a clover term at a physical value of the pion mass, $64^3 \times 128$ and a = 0.080 fm

At the physical point we find in the $\overline{\rm MS}$ at 2 GeV:

$$N_f = 2 \qquad \langle x \rangle_{u-d} = 0.194(9)(10) N_f = 2 + 1 + 1 \qquad \langle x \rangle_{u-d} = 0.179(22)$$

Proton spin puzzle

European Muon Collaboration (EMC) experiment at CERN: Deep Inelastic Scattering (DIS) of high energy polarized muons on polarized protons, J. Ashman *et al.* (EMC) Phys. Lett. B206 (1988) 364 and Nucl. Phys. B328 (1989) 1.

Naive quark model: Only valence quarks $\frac{1}{2} = \frac{1}{2}(\Delta u_v + \Delta d_v)$ where $\Delta u_v = \frac{4}{3}$ and $\Delta d_v = -\frac{1}{3}$ EMC result: $\frac{1}{2}\sum_q \Delta \Sigma_q \sim \frac{1}{4} \rightarrow \text{Spin puzzle}$

How does the spin of the nucleon arise?

Gluons and sea quarks are important $ightarrow \Delta G$ and $\Delta q_{
m sea}$

But also orbital angular momentum of quarks and gluons.

Spin of the nucleon

 $\Delta \Sigma_q \equiv \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} + \cdots$ Total quark angular momentum $J^q = \frac{1}{2} \Delta \Sigma^q + L^q$ and total gluon angular momentum J^g .

The total quark angular momenta J^q can be extracted from generalized form factors at zero momentum transfer $Q^2 = 0$ (unpolarized and helicity PFDs):

 $J^q = rac{1}{2} \left(A^q_{20}(0) + B^q_{20}(0)
ight)$ while $\Delta \Sigma^q = ilde{A}^q_{10}(0).$

Need to compute nucleon matrix elements of local operators.

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{g}$$
$$J^{q} = \frac{1}{2} \begin{pmatrix} A_{20}^{q}(0) + B_{20}^{q}(0) \end{pmatrix} \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$$

 (\tilde{x}_{i}, t_{i}) (\tilde{x}_{i}, t_{i}) (\tilde{x}_{i}, t_{i}) (\tilde{x}_{i}, t_{i}) (\tilde{x}_{i}, t_{i})

Need isoscalar g_A , which has disconnected contributions

- $N_f = 2$ twisted mass fermions with a clover term at a physical value of the pion mass, $48^3 \times 96$ and a = 0.093(1) fm
- Intrinsic quark spin: $\Delta \Sigma^q = g^q_A$
- $N_f = 2 + 1 + 1$ twisted mass clover-improved fermions under analysis

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{g}$$

 $J^{q} = \frac{1}{2} \left(A_{20}^{q}(0) + B_{20}^{q}(0)\right) \text{ and } \Delta\Sigma^{q} = g_{A}^{q}$

Need isoscalar g_A , which has disconnected contributions

We find from the plateau method:

•
$$g_A^{u+d} = -0.15(2)$$
 (disconnected only) with 854,400 statistics

• Combining with the isovector we find: $g_A^u = 0.828(21), g_A^d = -0.387(21)$

• $g_A^s = -0.042(10)$ with 861,200 statistics

• Volume and finite-*a* effects smaller than statistical errors at heavier that physical pion masses

 Disconnected contributions non-zero. Our result agrees with recent analysis by COMPASS that found 0.13 < ¹/₂ΔΣ < 0.18 C. Adolph et al., Phys. Lett. B753, 18 (2016), 1503.08935

- Volume and finite-a effects smaller than statistical errors at heavier that physical pion masses
- Disconnected contributions non-zero. Our result agrees with recent analysis by COMPASS that found 0.13 < ¹/₂ ΔΣ < 0.18 c. Adolph et al., Phys. Lett. B753, 18 (2016), 1503.08935
- Good agreement with other lattice QCD results

Results for the gluon content

- 2094 gauge configurations with 100 different source positions each → more than 200 000 measurements
- Due to mixing with the quark singlet operator, the renormalization and mixing coefficients had to be extracted from a one-loop perturbative lattice calculation, M. Constantinou and H. Panagopoulos
- $\langle x \rangle_{g,\text{bare}} = 0.318(24) \xrightarrow{\text{Renormalization}}$

 $< x >_{g}^{R} = Z_{gg} < x >_{g} + Z_{gq} < x >_{u+d+s} = 0.267(12)_{stat}(10)_{syst}$. The renormalization is

perturbatively done using two-levels of stout smearing. The systematic error is the difference between using one- and two-levels of stout smearing.

Momentum sum is satisfied:

 $\sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = \langle x \rangle_{u+d}|_{\text{conn.}} + \langle x \rangle_{u+d+s}|_{\text{disconn.}} + \langle x \rangle_{g} = 1.07(12)_{\text{stat}}(10)_{\text{syst}}$

Nucleon spin

Spin sum:
$$\frac{1}{2} = \sum_{q} \underbrace{\left(\frac{1}{2}\Delta\Sigma^{q} + L^{q}\right)}_{J^{q}} + J^{g}$$

 $\frac{1}{2}\Delta\Sigma^{u} = 0.415(13)(2), \quad \frac{1}{2}\Delta\Sigma^{d} = -0.193(8)(3), \quad \frac{1}{2}\Delta\Sigma^{s} = -0.021(5)(1) \quad (1$
 $J^{u} = 0.308(30)(24), \quad J^{d} = 0.054(29)(24), \quad J^{s} = 0.046(21)$
 $L^{u} = -0.107(32)(24), \quad L^{d} = 0.247(30)(24), \quad L^{s} = 0.067(21)(1)$

We find that $B_{20}^q(0) \sim 0 \longrightarrow$ taking $B_{20}(0)^g \sim 0$ we can directly check the nucleon spin sum:

$$J_N = (0.308)_u + (0.054)_d + (0.046)_s + (0.133)_g = 0.54(6)(5)$$

The proton spin puzzle

1987: the European Muon Collaboration showed that only a fraction of the proton spin is carried by the quarks \implies ETMC has now provided the solution

Recent results from lattice QCD at the physical point

C.A. et al., Phys. Rev. Lett. 119 (2017) arXiv:1706.02973

The proton momentum sum

→ Momentum sum also satisfied

 $\sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = 0.497(12)(5)|_{\text{conn.}} + 0.307(121)(95)|_{\text{disc.}} + 0.267(12)(10)|_{\text{gluon}} = 1.07(12)(10)|_{\text{gluon}} = 1.07(12)(10)|$

Recent results from lattice QCD at the physical point

C.A. et al., Phys. Rev. Lett. 119 (2017) arXiv:1706.02973

Conclusions

- Precision nucleon structure is now possible with all contributions taken into account and performing the simulation at the physical point
 no chiral extrapolation needed
- A number of collaborations are computing of g_A, (x)_{u-d}, etc, at the physical point allowing cross-check of approaches

On-going studies:

- Continuum limit need at least three lattice spacings
- Assessment volume effects
- Investigation of the proton radius using new methods e.g. position methods
- Computation of gluonic observables
- Study of excited states and resonances
- Study of scattering lengths and interactions
- etc.

Extended Twisted Mass Collaboration

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:

S. Bacchio, K. Cichy, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K.Jansen, Ch. kallidonis, G. Koutsou, A. Scapellato, F. Steffens, A. Vaquero

Thank you for your attention