LORENTZ INVARIANCE OF TWIST-3 QUARK DISTRIBUTIONS

Fatma Aslan & Matthias Burkardt

Outline

Discontinuities in twist-3 GPDs

➢Singularities in Twist-3 PDFs

Regularization of the singularities

>Lorentz invariance of twist-3 quark distributions

Zero Modes

Why study TWIST-3?

Low Q²: Twist-3 contamination can be significant.

> 12 GeV @ Jlab Twist-3 effects may not be negligible in the measurement of DVCS amplitude.

Constrain the parameterization of GPDs further. ³

Why study TWIST-3?

Low Q²: Twist-3 contamination can be significant.

> 12 GeV @ Jlab Twist-3 effects may not be negligible in the measurement of DVCS amplitude.

Constrain the parameterization of GPDs further. ⁴

Why study TWIST-3?

□ Information about quark-gluon-quark correlations.

Twist-3 PDFs	Twist-3 GPDs		
Force	Force Distribution		

Burkardt Transverse Force on Quarks in DIS (2008) Aslan, Burkardt, Schlegel Transverse Force Tomography (2019)

Next Talk: Matthias Burkardt, Transverse Force Tomography

TWIST-3 GPDs

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Genuine twist-3 contributions to the generalized parton distributions from instantons (2003)6

G₂ in Quark Target Model

$\widetilde{\textbf{\textit{G}}}_2$ in Quark Target Model

Quark target model in a symmetric frame

The divergent part of
$$G_2$$
 is calculated as, $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^-8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}$

The divergent part of
$$G_2$$
 is calculated as, $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^- 8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}.$

Using $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k^2_\perp - \lambda^2$, k^- in the numerator can be replaced by the following expression

$$k^{-} = \frac{M^{2}}{2p^{+}} - \frac{\left[(p-k)^{2} - \lambda^{2}\right]}{2(p^{+} - k^{+})} - \frac{\left(k_{\perp}^{2} + \lambda^{2}\right)}{2(p^{+} - k^{+})}$$

The divergent part of
$$G_2$$
 is calculated as, $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^-8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}$.
Using $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k_{\perp}^2 - \lambda_2^2$, k^- in the numerator can be replaced by the following expression

$$k^{-} = \frac{M^2}{2p^{+}} \underbrace{\left[(p-k)^2 - \lambda^2 \right]}_{2(p^{+} - k^{+})} - \frac{(k_{\perp}^2 + \lambda^2)}{2(p^{+} - k^{+})} - \frac{(k_{\perp}^2 + \lambda^2)}{2(p^{+} - k^{+})} \right]$$

The second term cancels the propagator in the denominator leading to the following contribution which is nonzero only in the ERBL region, $-\xi < x < \xi$.

$$ig^{2}4p^{+}\frac{(1+x)}{(1-x)}\int \frac{d^{2}k_{\perp}dk^{-}}{(2\pi)^{4}}\frac{1}{\left[(k+\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]\left[(k-\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]}.$$

Discontinuities of Twist-3 GPDs in Quark Target Model

Twist-3 Vector GPDs	Quark Target Model
G_1	\checkmark
G_2	×
G ₃	×
G_4	×

Twist-3 Axial V. GPDs	Quark Target Model		
\widetilde{G}_1	\checkmark		
${\widetilde{G}}_2$	×		
${\widetilde G}_3$	×		
\widetilde{G}_4	×		

✓: Continuous×: Discontinuous

Discontinuities and DVCS Factorization

$$\int_{-1}^{1} dx \frac{GPD}{x \pm \xi + i\varepsilon}$$
 Discontinuities \rightarrow Divergent scattering amplitudes \rightarrow Factorization ?

Twist-3 GPDs are discontinuous \rightarrow Linear combinations of twist-3 GPDs that enter the DVCS amplitude are well-behaved \rightarrow Twist -3 DVCS factorization is safe

Aslan, Burkardt, Lorce, Metz, Pasquini, Twist-3 GPDs in DVCS, 2018

Discontinuities and DVCS Factorization

Twist-3 GPDs are discontinuous \rightarrow Linear combinations of twist-3 GPDs that enter the DVCS amplitude are well-behaved \rightarrow Twist -3 DVCS factorization is safe

Aslan, Burkardt, Lorce, Metz, Pasquini, Twist-3 GPDs in DVCS, 2018

How do the discontinuities behave as $\xi \rightarrow 0$?

How do the discontinuities behave as $\xi \rightarrow 0$?

What happens in different models ?

What happens in different models ?

The forward limit: g₂ and g₂^{Quasi} in SDM

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Twist-3 Quark Distributions

Twist-3 Quark Distributions

g₂ (k⁺) and g₂^{Quasi} (k^z) in SDM

There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

$g_2(x) \& g_2^{quasi}(x)$ in scalar di-quark model

There is a singularity at x=0

$g_2(x) \& g_2^{quasi}(x)$ in scalar di-quark model

There is a singularity at x=0

 $g_2(x) \& g_2^{quasi}(x)$ in scalar di-quark model

There is a singularity at x=0

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Singularities in twist-3 quark distributions

Twist-2 PDF	SDM	QTM
f_1	×	×
g 1	×	×
h1	×	×

Twist-3 PDFSDMQTMe \checkmark \checkmark h_L \checkmark \checkmark $g_T(g_2)$ \checkmark \checkmark

✓: There is δ(x)
×: There is no δ(x)

Aslan, Burkardt, Singularities in Twist-3 Quark Distributions, 2018.

Burkardt, Koike, Violation of sum rules for twist three parton distributions in QCD, 2001.

• At twist-3 there is something that does not exist in twist-2: There are delta functions.

• We identify these delta functions with momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite momentum.

Decomposition of twist-3

 $h_L(x) = h_L^{WW}(x) + h_L^m(x) + h_L^3(x)$

 $\delta(x)$ term appears not only in h_L^m but also in h_L^3

Burkardt & Koike, Violation of Sum Rules for Twist 3 Parton Distributions in QCD, 2001

$\delta(x)$ remains	$\delta(x)$ is recovered		
Transverse momentum cut off Dimensional regularization	Pauli-Villars regularization		
Adding form factors			
Adding axial diquark contribution			

Example:

- -- What happens if a twist-3 distribution involves a $\delta(x)$?
- -- Sum rules are violated if we don't take it into account.

Lorentz invariance of twist-3 GPDs $\int_{-1}^{1} dx G_i(x,\xi,\Delta) = 0, \qquad \int_{-1}^{1} dx \widetilde{G}_i(x,\xi,\Delta) = 0.$ $\lim_{\epsilon \to 0} \int_{-1}^{\epsilon} dx G_i(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{-1}^{1} dx G_i(x,\xi=0,\Delta) \neq 0,$ $\lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} dx \widetilde{G}_i(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{-\epsilon}^{1} dx \widetilde{G}_i(x,\xi=0,\Delta) \neq 0.$ In SDM the divergent part of G_2 was calculated as $G_2 = \begin{cases} -\frac{g^2}{4\pi^2} \frac{(1-x)}{(1-\xi^2)} \ln \Lambda_\perp & \text{for} \quad \xi < x \le 1, \\ -\frac{g^2}{16\pi^2} \frac{(2x+\xi-1)}{\xi(1+\xi)} \ln \Lambda_\perp & \text{for} \quad -\xi \le x \le \xi, \\ 0 & \text{for} \quad -1 < x \le \xi. \end{cases}$ The Lorentz invariance $\int_{-1}^{1} dx \ G_2 = -\frac{g^2}{16\pi^2} \int_{-\xi}^{\xi} dx \ \frac{(2x+\xi-1)}{\xi(1+\xi)} \ln\Lambda_{\perp} - \frac{g^2}{4\pi^2} \int_{\xi}^{1} dx \ \frac{(1-x)}{(1-\xi^2)} \ln\Lambda_{\perp} = 0$ of G_2 is satisfied \checkmark

- -- What happens if a twist-3 distribution involves a $\delta(x)$?
- -- Sum rules are violated if we don't take it into account.

Lorentz invariance of twist-3 GPDs $\int_{-1}^{1} dx G_{i}(x,\xi,\Delta) = 0, \quad \int_{-1}^{1} dx \widetilde{G}_{i}(x,\xi,\Delta) = 0.$

$$\int_{-1}^{1} dx g_1(x) = \int_{-1}^{1} dx g_T(x)$$

$$\int_{-1}^{1} dx h_1(x) = \int_{-1}^{1} dx h_L(x)$$

$$\int_{-1}^{1} dx e(x) = \frac{1}{2M} \langle p | \overline{\psi}(0) \psi(0) | p \rangle = \frac{d}{dm} M$$

If one tries to confirm these sum rules experimentally by drawing conclusions from the behavior <u>near x=0</u> about the behavior <u>at x=0</u> they might claim that the sum rules are violated.

LORENTZ INVARIANCE RELATIONS (LIR): CUT DIAGRAMS vs UNCUT DIAGRAMS

-- There is no difference between the two approaches at twist-2 level. Both methods are equivalent and yields identical PDFs. They also agree for 0<x<1, so how can one method result in a violation of LIR and other does not?

--The answer is in the appearance of $\delta(x)$ term when using the uncut diagrams which is not present in the cut diagrams.

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions Aslan, Burkardt, Lorentz invariance of twist-3 quark distributions (in preparation) 50

The origin of $\delta(x)$

$$g_T(x) = ig^2 \int \frac{d^4k}{(2\pi)^4} \delta(k^+ - xP^+) \frac{(x + \frac{m}{M})(2k^-P^+ + mM)}{(k^2 - m^2 + i\epsilon^2)[(p - k)^2 - \lambda^2 + i\epsilon]}$$

$$k^{-} = \frac{M^{2}}{2p^{+}} - \frac{(p-k)^{2} - \lambda^{2}}{2(p^{+} - k^{+})} - \frac{(k_{\perp}^{2} + \lambda^{2})}{2(p^{+} - k^{+})}$$

$$\int \frac{dk^-}{(k^2 - m^2 + i\epsilon)^2}$$

for
$$k^+ \neq 0$$
, $\int \frac{dk^-}{(k^2 - m^2 + i\epsilon)^2} = \int \frac{dk^-}{\left[2k^+ \left(k^- - \frac{(k_\perp^2 + m^2)}{2k^+} + \frac{i\epsilon}{2k^+}\right)\right]^2} = 0$

for all
$$k^+ \int dk^+ dk^- \frac{1}{(k^2 - m^2 + i\epsilon)^2} = \int dk^+ dk^- \frac{1}{(2k^+k^- - k_\perp^2 - m^2 + i\epsilon)^2}$$

= $\int d^2k_L \frac{1}{(k_L^2 - k_\perp^2 - m^2 + i\epsilon)^2} = \frac{i\pi}{k_\perp^2 + m^2}$
Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

The origin of $\delta(x)$

Aslan, Burkardt- Lorentz Invariance o **Twist-3 Quark Distributions**

 $= \int d^2k_L \frac{1}{(k_L^2 - k_\perp^2 - m^2 + i\epsilon)^2} = \frac{i\pi}{k_\perp^2 + m^2}$

52

.g2(x)

g₂^{quasi}(x)

1.5

The origin of $\delta(x)$

ZERO MODES and THE VACUUM

In LF framework zero modes are responsible for vacuum condensates.

Burkardt, 1995 Light Front Quantization

In a regularized framework, physics of light-cone zero modes is not described correctly by one single mode with k⁺=0, but by an infinite number of modes in an infinitesimal vicinity of k⁺=0.

> Burkardt, 1993 LF quantization of the sine-Gordon model

Related work: Zero modes and vacuum condensates

Mannheim, Lowdon, Brodsky, 2019 Structure of light front vacuum sector

 $D(x^+ > 0, instant) = D(x^+ > 0, LF)$

 $D(x^+ = 0, \text{ instant}) \neq D(x^+ = 0, LF)$

Collins, 2018

The non-triviality of the vacuum in light-front quantization: An elementary treatment

..... Evidently there is a mathematical error in evaluating the integral in Eq. (5) by first performing the k^- integral and blindly using the zero result. The correct result, as found by Chang and Ma [5] and Yan [6], is that the integral over k^- in Eq. (5) gives a delta function at k^+

• Perturbative study of $k^+ \approx 0$, LF quantization of the sine-Gordon model.

Burkardt, 1993

• Non-perturbative condensates from zero modes in a LF Fock space approach.

Burkardt, Lenz, Thies, 2002 Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

Conclusions

- Twist-3 GPDs have discontinuities.
- > Twist-3 PDFs contain a $\delta(x)$.

 $\geq \delta(x)$ is related to the zero modes in the LF framework.

Twist-2 PDF	SDM	QTM	Twist-3 PDF	SDM	QTM
f_1	×	×	е	\checkmark	\checkmark
g 1	×	×	h⊥	\checkmark	\checkmark
h₁	×	×	<i>g</i> ⊺ (g₂)	\checkmark	×

Zero modes are related to the twist-3 distributions.

 \succ Lorentz Invariance of twist-3 distributions are violated if $\delta(x)$ is not taken into account.

Conclusions

- Twist-3 GPDs have discontinuities.
- > Twist-3 PDFs contain a $\delta(x)$.

 $\geq \delta(x)$ is related to the zero modes in the LF framework.

Twist-2 PDF	SDM	QTM	Twist-3 PDF	SDM	QTM
f_1	×	×	е	\checkmark	\checkmark
g 1	×	×	h⊥	\checkmark	\checkmark
h₁	×	×	g⊤ (g₂)	\checkmark	×

Zero modes are related to the twist-3 distributions.

> Lorentz Invariance of twist-3 distributions are violated if $\delta(x)$ is not taken into account.

THANK YOU