Generalized Wandzura Wilczek Relations and Partonic Orbital Angular Momentum

> **Abha Rajan Brookhaven National Laboratory**

QCD Evolution 2019 Argonne National Laboratory 13-17 May 2019

Collaborators

- Simonetta Liuti (University of Virginia)
- Michael Engelhardt (New Mexico State University)
- Aurore Courtoy (Mexico University)

Outline

- Partonic Orbital Angular Momentum
- Wandzura Wilczek and genuine twist three contributions to twist 3 GPDs
- Role of the gauge link
- Extending to chiral odd sector and twist four

AR, Engelhardt and Liuti PRD 98 (2018)

AR, Courtoy, Engelhardt and Liuti PRD 94 (2016)

QCD Energy Momentum Tensor

Deeply Virtual Compton Scattering, moments of GPDs etc.

QCD Energy Momentum Tensor

GPD based definition of Angular Momentum

$$
J_{q,g}^i = \frac{1}{2} \epsilon^{ijk} \int d^3x \left(T_{q,g}^{0k} x^j - T_{q,g}^{0j} x^k \right)
$$

$$
\vec{J}_q = \int d^3x \psi^{\dagger} \left[\vec{\gamma} \gamma_5 + \vec{x} \times i \vec{D} \right] \psi \qquad \vec{J}_g = \int d^3x \left(\vec{x} \times \left(\vec{E} \times \vec{B} \right) \right)
$$

$$
J_q = \frac{1}{2} \int dx x (H_q(x, 0, 0) + E_q(x, 0, 0))
$$
 xiangdong Ji, PRL 78.610,1997

To access OAM, we take the difference between total angular momentum and spin

Direct description of OAM

$$
\int dx x G_2 = \int dx x (H + E) - \int dx \tilde{H}
$$

$$
G_2 = \tilde{E}_{2T} + H + E
$$

Kiptily and Polyakov, Eur Phys J C 37 (2004) Hatta and Yoshida, JHEP (1210), 2012

• The moment in x of the GPD G_2 shown to be OAM

Intrinsic Transverse Momentum

Semi inclusive Deep Inelastic Scattering

However, the target does not remain intact, no access to the spatial distribution of partons

Transverse Momentum Distributions

 \blacktriangleright X, k_{T}

Z

Partonic Orbital Angular Momentum II

- Consider measuring both the intrinsic transverse momentum and the spatial distribution of partons
- $L_{q,z} = b_T \times k_T$

$$
W_{\Lambda,\Lambda'}^{[\gamma^+]} = \frac{1}{2M} \bar{U}(p',\Lambda')[F_{11} + \frac{i\sigma^{i+}k_T^i}{\bar{p}_+}F_{12} + \frac{i\sigma^{i+}\Delta_T^i}{\bar{p}_+}F_{13} + \frac{i\sigma^{ij}k_T^i\Delta_T^j}{M^2}F_{14}]U(p,\Lambda)
$$

Generalized Transverse Momentum Distributions (related by Fourier transform to Wigner Distributions)

Meissner Metz and Schlegel, JHEP 0908 (2009)

GTMDs that describe OAM

• How does F₁₄ connect to OAM?

$$
\mathcal{W}(x,\mathbf{k}_T,\mathbf{b})=\int \frac{d^2\Delta_T}{(2\pi)^2}e^{ib.\Delta_T}\left[W_{++}^{\gamma^+}-W_{--}^{\gamma^+}\right]
$$

$$
L = \int dx \int d^2k_T \int d^2\mathbf{b}(\mathbf{b} \times \mathbf{k}_T) \mathcal{W}(x, \mathbf{k}_T, \mathbf{b}) = -\int dx \int d^2k_T \frac{k_T^2}{M^2} F_{14}
$$

Lorce et al PRD84, (2011)

• Another GTMD relevant to OAM

$$
\bigodot \hspace{-1.2mm} \bullet \hspace{1.2mm} \hspace{1.2mm} \hspace{1.2mm} \hspace{1.2mm} \bullet \hspace{1.2mm} \hspace{1.2mm} \hspace{1.2mm} \bullet \hspace{1.2mm} \hspace{1.2mm} \hspace{1.2mm} \bullet \hspace{1.2mm}
$$

G₁₁ describes a longitudinally polarized quark in an unpolarized proton. Measures spin orbit correlation.

The Two Definitions

• Weighted average of $b_T \times k_T$

$$
L_z = -\int dx \int d^2k_T \frac{k_T^2}{M^2} F_{14}
$$

Lorce, Pasquini (2011)

• Difference of total angular momentum and spin

$$
\mathcal{L}_q = J_q - \frac{1}{2} \Delta \Sigma
$$
\n
$$
\frac{1}{2} \int_{-1}^{1} dx x (H_q + E_q)
$$
\n
$$
\frac{1}{2} \int_{-1}^{1} dx \tilde{H}_q
$$

The Two Definitions

• Weighted average of $b\tau$ X $k\tau$

$$
L_z = -\int dx \int d^2k_T \frac{\kappa_T}{M^2} F_{14}
$$

Lorce, Pasquini (2011)

• Difference of total angular momentum and spin

 12

Is there a connection?

• We find that

$$
F_{14}^{(1)}(x) = \int_x^1 dy \left(\tilde{E}_{2T}(y) + H(y) + E(y) \right)
$$

AR, Engelhardt and Liuti PRD 98 (2018)

AR, Courtoy, Engelhardt and Liuti PRD 94 (2016)

- This is a form of Lorentz Invariant Relation (LIR)
- This is a distribution of OAM in x
- Derived for a straight gauge link

Higher Twist

 $\int \frac{dz}{2\pi} e^{ixP^+z^-} \langle p', \Lambda' | \bar{\psi}(-z/2) \Gamma \psi(z/2) | p, \Lambda \rangle_{z^+=z_T=0}$

 $\gamma^+, \gamma^+ \gamma^5, \sigma^{i+} \gamma^5$

Leading twist – twist 2

- Involve only good components
- Simple interpretation in terms of parton densities

 $\gamma^i,\gamma^i\gamma^5,\sigma^{ij}\gamma^5,1,\gamma^5,\sigma^{+-}\gamma^5$

Higher twist - twist 3

- Involve one good and one bad component
- The bad component represents a quark gluon composite

Derivation of Generalized LIRs

To derive these we look at the parameterization of the quark quark correlator function at different levels

 $\int \frac{d^4z}{2\pi}e^{ik.z}\langle p', \Lambda' | \bar{\psi}(-z/2)\Gamma \psi(z/2) | p, \Lambda \rangle$ Generalized Parton
Integrate over k^-
Meissner Metz and Schlegel, **Generalized Parton** JHEP 0908 (2009) $\int \frac{dz_-d^2z_T}{2\pi}e^{ixP^+z^- - k_T.z_T}\langle p', \Lambda' \mid \bar{\psi}(-z/2)\Gamma\psi(z/2) \mid p, \Lambda \rangle_{z^+ = 0}$ **GTMDS** Integrate over k_T $\int \frac{dz_-}{2\pi} e^{ixP^+z^-} \langle p', \Lambda' \mid \bar{\psi}(-z/2) \Gamma \psi(z/2) \mid p, \Lambda \rangle_{z^+=z_T=0}$ **GPDS**

- Parametrization of the quark quark correlator at different levels
- LIRs occur because the number of GPCFs is less than the number of GTMDs.

$$
\mathcal{W}_{\Lambda\Lambda'}^{[\gamma^{\mu}]} = \frac{\bar{U}U}{M}(P^{\mu}A_{1}^{F} + k^{\mu}A_{2}^{F} + \Delta^{\mu}A_{3}^{F}) + i\frac{\bar{U}\sigma^{\mu k}U}{M}A_{5}^{F} + i\frac{\bar{U}\sigma^{\mu\Delta}U}{M}A_{6}^{F}
$$
\n
$$
+ i\frac{\bar{U}\sigma^{k\Delta}U}{M^{3}}(P^{\mu}A_{8}^{F} + k^{\mu}A_{9}^{F} + \Delta^{\mu}A_{17}^{F})
$$
\nIntegrate over k^{-}
\n
$$
W_{\Lambda,\Lambda'}^{[\gamma^{+}]} = \frac{1}{2M}\bar{U}(p',\Lambda')[F_{11} + \frac{i\sigma^{i+}k_{T}^{i}}{\bar{p}_{+}}F_{12} + \frac{i\sigma^{i+}\Delta_{T}^{i}}{\bar{p}_{+}}F_{13} + \frac{i\sigma^{ij}k_{T}^{i}\Delta_{T}^{j}}{M^{2}}F_{14}]U(p,\Lambda)
$$
\nIntegrate over k_{T}
\n
$$
F_{\Lambda,\Lambda'}^{[\gamma^{i}]} = \frac{1}{2(P^{+})^{2}}\bar{U}\left[i\sigma^{+i}H_{2T} + \frac{\gamma^{+}\Delta_{T}^{i}}{2M}E_{2T} + \frac{P^{+}\Delta_{T}^{i}}{M^{2}}\tilde{H}_{2T} - \frac{P^{+}\gamma^{i}}{M}\tilde{E}_{2T}\right]U
$$
\n
$$
\int \frac{d^{4}z}{2\pi}e^{ik.z}\langle p',\Lambda' | \bar{\psi}(-z/2)\Gamma\psi(z/2) | p,\Lambda\rangle
$$

- As the quark quark correlator is non-local, the parametrization depends on choice of gauge link
- At the completely unintegrated level, we have no knowledge of the light-cone direction for a straight gauge link, hence fewer functions occur at this level for this case as compared to staple gauge link case **Gauge link**

$$
\int \frac{d^4z}{2\pi} e^{ik.z} \langle p', \Lambda' | \bar{\psi}(-z/2) \mathcal{U} \Gamma \psi(z/2) | p, \Lambda \rangle
$$

Non local operator

$$
\int \frac{d^4z}{2\pi} e^{ik.z} \langle p', \Lambda' \mid \bar{\psi}(-z/2) \mathcal{U} \Gamma \psi(z/2) \mid p, \Lambda \rangle
$$

$$
\mathcal{W}_{\Lambda\Lambda'}^{[\gamma^{\mu}]} = \frac{\bar{U}U}{M}(P^{\mu}A_1^F + k^{\mu}A_2^F + \Delta^{\mu}A_3^F) + i\frac{\bar{U}\sigma^{\mu k}U}{M}A_5^F + i\frac{\bar{U}\sigma^{\mu\Delta}U}{M}A_6^F + i\frac{\bar{U}\sigma^{\mu\Delta}U}{M}A_6^F + i\frac{\bar{U}\sigma^{\kappa\Delta}U}{M^3}(P^{\mu}A_8^F + k^{\mu}A_9^F + \Delta^{\mu}A_{17}^F) -2/2
$$

$$
W_{\lambda\lambda'}^{[\gamma^{\mu}]}(P,k,\Delta,N;\eta)
$$

= $\bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1^F + \frac{k^{\mu}}{M} A_2^F + \frac{\Delta^{\mu}}{M} A_3^F + \frac{N^{\mu}}{M} A_4^F + \frac{i\sigma^{\mu k}}{M} A_5^F + \frac{i\sigma^{\mu \Delta}}{M} A_6^F + \frac{i\sigma^{\mu N}}{M} A_7^F + \frac{P^{\mu} i\sigma^{k\Delta}}{M^3} A_8^F + \frac{k^{\mu} i\sigma^{k\Delta}}{M^3} A_9^F + \frac{N^{\mu} i\sigma^{k\Delta}}{M^3} A_{10}^F + \frac{P^{\mu} i\sigma^{kN}}{M^3} A_{11}^F + \frac{k^{\mu} i\sigma^{kN}}{M^3} A_{12}^F + \frac{N^{\mu} i\sigma^{kN}}{M^3} A_{13}^F + \frac{P^{\mu} i\sigma^{\Delta N}}{M^3} A_{14}^F + \frac{\Delta^{\mu} i\sigma^{\Delta N}}{M^3} A_{15}^F + \frac{N^{\mu} i\sigma^{\Delta N}}{M^3} A_{16}^F \right] u(p,\lambda),$ (2.19)
-Z/2

An analogy

• The proton electromagnetic current is parameterized by the Dirac and Pauli form factors

$$
J^{\mu} = e\overline{U}(P', S') \left[\gamma^{\mu} F_1 + \frac{i\sigma^{\mu\Delta}}{2M} F_2 \right] U(P, S)
$$

• We know that the vector GPDs should integrate to some combination of the same form factors irrespective of twist

$$
\int dx H(x,0,t) = F_1(t)
$$

• The same set of As describe the whole vector sector.

$$
F_{14}^{(1)} = \int d\sigma d\sigma' d\tau \frac{M^3}{2} J \left[A_8^F + x A_9^F \right]
$$

\n
$$
J = \sqrt{x\sigma - \tau - \frac{x^2 P^2}{M^2} - \frac{\Delta_T^2 \sigma'^2}{M^2}}
$$

\n
$$
H + E = \int d\sigma d\sigma' d\tau \frac{M^3}{J} \sigma' A_5^F + A_6^F + \left(\frac{\sigma}{2} - \frac{xP^2}{M^2}\right) \left(A_8^F + x A_9^F\right)
$$

\n
$$
\frac{\gamma_T^i}{T} \rightarrow \tilde{E}_{2T} = \int d\sigma d\sigma' d\tau \frac{M^3}{J} \left[\left(x\sigma - \tau - \frac{x^2 P^2}{M^2} - \frac{\Delta_T^2 \sigma'^2}{M^2}\right) A_9^F - \sigma' A_5^F - A_6^F \right]
$$

\n
$$
\sigma \equiv \frac{2k.P}{M^2}, \qquad \tau \equiv \frac{k^2}{M^2}, \qquad \sigma' \equiv \frac{k.\Delta}{\Delta^2} = \frac{k_T.\Delta_T}{\Delta_T^2}
$$

\n
$$
-\frac{dF_{14}^{(1)}}{dx} = \tilde{E}_{2T} + H + E
$$

\n
$$
F_{14}^{(1)}(x) = \int_x^1 dy \left(\tilde{E}_{2T}(y) + H(y) + E(y)\right)
$$
 Distribution of OAM in x!
\n
$$
\frac{k_T^2}{W}
$$
moment of a twist
\n
$$
\frac{k_T^2}{W}
$$
moment of a twist
\n
$$
\frac{k_T^2}{W}
$$

The GTMDs are complex in general.

$$
X = X^e + iX^o
$$

The imaginary part integrates to zero, on integration over kT.

LIR violating term

$$
\frac{dF_{14}^{(1)}}{dx} = \tilde{E}_{2T} + H + E
$$

$$
\int \frac{d^4z}{2\pi} e^{ik.z} \langle p', \Lambda' \mid \bar{\psi}(-z/2) \mathcal{U} \Gamma \psi(z/2) \mid p, \Lambda \rangle
$$

$$
\mathcal{W}_{\Lambda\Lambda'}^{[\gamma^{\mu}]} = \frac{\bar{U}U}{M}(P^{\mu}A_1^F + k^{\mu}A_2^F + \Delta^{\mu}A_3^F) + i\frac{\bar{U}\sigma^{\mu k}U}{M}A_5^F + i\frac{\bar{U}\sigma^{\mu\Delta}U}{M}A_6^F + i\frac{\bar{U}\sigma^{\mu\Delta}U}{M}A_6^F + i\frac{\bar{U}\sigma^{\kappa\Delta}U}{M^3}(P^{\mu}A_8^F + k^{\mu}A_9^F + \Delta^{\mu}A_{17}^F) -2/2
$$

$$
W_{\lambda\lambda'}^{[\gamma^{\mu}]}(P,k,\Delta,N;\eta)
$$

= $\bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1^F + \frac{k^{\mu}}{M} A_2^F + \frac{\Delta^{\mu}}{M} A_3^F + \frac{N^{\mu}}{M} A_4^F + \frac{i\sigma^{\mu k}}{M} A_5^F + \frac{i\sigma^{\mu \Delta}}{M} A_6^F + \frac{i\sigma^{\mu N}}{M} A_7^F + \frac{P^{\mu} i\sigma^{k\Delta}}{M^3} A_8^F + \frac{k^{\mu} i\sigma^{k\Delta}}{M^3} A_9^F + \frac{N^{\mu} i\sigma^{k\Delta}}{M^3} A_{10}^F + \frac{P^{\mu} i\sigma^{kN}}{M^3} A_{11}^F + \frac{k^{\mu} i\sigma^{kN}}{M^3} A_{12}^F + \frac{N^{\mu} i\sigma^{kN}}{M^3} A_{13}^F + \frac{P^{\mu} i\sigma^{\Delta N}}{M^3} A_{14}^F + \frac{\Delta^{\mu} i\sigma^{\Delta N}}{M^3} A_{15}^F + \frac{N^{\mu} i\sigma^{\Delta N}}{M^3} A_{16}^F \right] u(p,\lambda),$ (2.19)
-Z/2

LIR violating term

$$
\frac{dF_{14}^{(1)}}{dx} = \tilde{E}_{2T} + H + E
$$

LIR violating term

 $Z/2$

 N

$$
\frac{dF_{14}^{(1)}}{dx} = \widetilde{E}_{2T} + H + E + A_{F_{14}}
$$

$$
\mathcal{A}_{F_{14}}(x) = v^{-\frac{(2P^{+})^{2}}{M^{2}}} \int d^{2}k_{T} \int dk^{-} \left[\frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} (A_{11} + x A_{12}) + A_{14} \right] + \frac{k_{T}^{2} \Delta_{T}^{2} - (k_{T} \cdot \Delta_{T})^{2}}{\Delta_{T}^{2}} \left(\frac{\partial A_{8}}{\partial (k \cdot v)} + x \frac{\partial A_{9}}{\partial (k \cdot v)} \right) \right]
$$

= $\frac{dF_{14}^{(1)}}{dx} - \frac{dF_{14}^{(1)}}{dx} \Big|_{v=0}$

Intrinsic Momentum vs Momentum Transfer Δ

Courtoy et al PhysLett B731, 2013 Burkardt, Phys Rev D62, 2000

$$
\int \frac{dz_-}{2\pi} e^{ixP^+z^-} \langle p',\Lambda'\mid \bar{\psi}(-z/2) \Gamma \psi(z/2) \mid p,\Lambda \rangle_{z^+=z_T=0}
$$

 \boldsymbol{b}

Equations of Motion Relations

$$
\begin{array}{rcl}\n(i\cancel{D} - m)\psi(z_{out}) & = & (i\cancel{O} + g\cancel{A} - m)\psi(z_{out}) = 0, \\
\overline{\psi}(z_{in})(i\overleftrightarrow{D} + m) & = & \overline{\psi}(z_{in})(i\overleftrightarrow{O} - g\cancel{A} + m) = 0\n\end{array}
$$

Equations of Motion Relations

$$
\mathcal{U} i \sigma^{i+} \gamma_5 (i\not p - m) \psi(z_{out}) = \mathcal{U} i \sigma^{i+} \gamma_5 (i\not \phi + gA - m) \psi(z_{out}) = 0,
$$

$$
\bar{\psi}(z_{in}) (i\not \bar{p} + m) i \sigma^{i+} \gamma_5 \mathcal{U} = \bar{\psi}(z_{in}) (i\not \bar{\phi} - gA + m) i \sigma^{i+} \gamma_5 \mathcal{U} = 0
$$

Equations of Motion Relations

$$
\mathcal{U}i\sigma^{i+}\gamma_5(i\rlap{\,/}D - m)\psi(z_{out}) = \mathcal{U}i\sigma^{i+}\gamma_5(i\rlap{\,/}\partial + gA - m)\psi(z_{out}) = 0,
$$

$$
\bar{\psi}(z_{in})(i\rlap{\,/}\bar{D} + m)i\sigma^{i+}\gamma_5\mathcal{U} = \bar{\psi}(z_{in})(i\rlap{\,/}\bar{\partial} - gA + m)i\sigma^{i+}\gamma_5\mathcal{U} = 0
$$

$$
\int db^- d^2b_T e^{-ib\cdot\Delta}\int dz^- d^2z_T e^{-ik\cdot z}\langle p',\Lambda'|\bar{\psi}\left[(i\overleftarrow{D}+m) i\sigma^{i+}\gamma^5\pm i\sigma^{i+}\gamma^5(i\overrightarrow{D}-m)\right]\psi|p,\Lambda\rangle=0
$$

Equations of Motion P

Crucial for understanding qgq contribution to GPDs!!

$$
\mathcal{U} i \sigma^{i+} \gamma_5 (i\not p - m) \psi(z_{out}) = \mathcal{U} i \sigma^{i+} \gamma_5 (i\not \partial + g \mathcal{A} - m) \psi(z_{out}) = 0, \n\bar{\psi}(z_{in}) (i\not \bar{\mathcal{D}} + m) i \sigma^{i+} \gamma_5 \mathcal{U} = \bar{\psi}(z_{in}) (i\not \bar{\partial} - g \mathcal{A} + m) i \sigma^{i+} \gamma_5 \mathcal{U} = 0
$$

$$
\int db^- d^2b_T e^{-ib\cdot\Delta} \int dz^- d^2z_T e^{-ik\cdot z} \langle p', \Lambda' | \bar{\psi} \left[(i\overleftarrow{D} + m) i\sigma^{i+} \gamma^5 \pm i\sigma^{i+} \gamma^5 (i\overrightarrow{D} - m) \right] \psi |p, \Lambda \rangle = 0
$$

EoM relations for Orbital Angular Momentum

no mass term!

$$
x\tilde{E}_{2T} = -\tilde{H} + \frac{2}{3}\int d^2k_T \frac{k_T^2 \sin^2 \phi}{M^2} F_{14} + \frac{\Delta^i}{\Delta_T^2} \int d^2k_T (\mathcal{M}_{++}^{i,S} - \mathcal{M}_{--}^{i,S})
$$
\nTwist 3

\nFourier **Twist 3**

\nFourier **Twist 4**

\nEquation (explicit gluon)

$$
\mathcal{M}_{\Lambda'\Lambda}^{i,S} = \frac{i}{4} \int \frac{dz^{-}d^{2}z_{T}}{(2\pi)^{3}} e^{ixP^{+}z^{-}-ik_{T}\cdot z_{T}} \langle p', \Lambda' | \overline{\psi} \left(-\frac{z}{2} \right) \left[(\overrightarrow{\theta} - igA)U\Gamma \Big|_{-z/2} + \Gamma \mathcal{U}(\overleftarrow{\theta} + igA) \Big|_{z/2} \right] \psi \left(\frac{z}{2} \right) | p, \Lambda \rangle_{z+} = 0
$$

$$
\int dx \int d^{2}k_{T} \mathcal{M}_{\Lambda'\Lambda}^{i,S} = i\epsilon^{ij}gv^{-} \frac{1}{2P^{+}} \int_{0}^{1} ds \langle p', \Lambda' | \overline{\psi}(0)\gamma^{+}U(0,sv)F^{+j}(sv)U(sv,0)\psi(0) | p, \Lambda \rangle
$$

Wandzura Wilczek Relations

$$
\tilde{E}_{2T} = -\int_{x}^{1} \frac{dy}{y} (H + E) + \left[\frac{\tilde{H}}{x} - \int_{x}^{1} \frac{dy}{y^{2}} \tilde{H} \right] + \left[\frac{1}{x} \mathcal{M}_{F_{14}} - \int_{x}^{1} \frac{dy}{y^{2}} \mathcal{M}_{F_{14}} \right]
$$
\nTwist three vector GPD

\nWist two vector GPD

\nWist two coordinates to a vector GPD

\nQPD

\nAR, Engelhardt and Liuti PRD 98 (2018)

$$
g_2(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(x) + \bar{g}_2(x)
$$

Twist three
PDF
Twist two
Genuine Tw 3

Moments of twist three GPDs
\n-Quark gluon structure
\n
$$
\int dx \tilde{E}_{2T} = -\int dx(H+E) \Rightarrow \int dx (\tilde{E}_{2T} + H+E) = 0
$$
\n
$$
\int dx \tilde{E}_{2T} = -\frac{1}{2} \int dx H + E - \frac{1}{2} \int dx \tilde{H} \qquad \text{OMM}
$$
\n
$$
\int dx \tilde{E}_{2T} = -\frac{1}{3} \int dx x^{2}(H+E) - \frac{2}{3} \int dx \tilde{H} + \frac{2}{3} \int dx x M_{F_{14}} \Big|_{v=0}
$$

Genuine Twist Three

$$
\int dx \, x \int d^2k_T \, \mathcal{M}^{i,S}_{\Lambda'\Lambda} \;\; = \;\; \frac{ig}{4(P^+)^2} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ \gamma^5 F^{+i}(0) \psi(0) | p, \Lambda \rangle
$$

Moments of twist three GPDs -Quark gluon structure @ -

$$
\int dx \left(E'_{2T} + 2\widetilde{H}'_{2T} \right) = -\int dx \widetilde{H} \implies \int dx \left(E'_{2T} + 2\widetilde{H}'_{2T} + \widetilde{H} \right) = 0
$$

$$
\int dx \underline{x} \left(E_{2T}' + 2 \widetilde{H}_{2T}' \right) = -\frac{1}{2} \int dx x \widetilde{H} - \frac{1}{2} \int dx H + \frac{m}{2M} \int dx (E_T + 2 \widetilde{H}_T)
$$

mass term

$$
\int dx \underline{x}^2 \left(E_{2T}' + 2\widetilde{H}_{2T}' \right) = -\frac{1}{3} \int dx \underline{x}^2 \widetilde{H} - \frac{2}{3} \int dx x H + \frac{2m}{3M} \int dx x (E_T + 2\widetilde{H}_T) - \frac{2}{3} \int dx x \mathcal{M}_{G_{11}} \Big|_{v=0}
$$
\nGenuing Twist Three

$$
\int dx \, x \int d^2k_T \, \mathcal{M}^{i,A}_{\Lambda'\Lambda} \quad = \quad \frac{g}{4(P^+)^2} \epsilon^{ij} \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ F^{+j}(0) \psi(0) | p, \Lambda \rangle
$$

Back to staple gauge link and LIR violating term

Equation of Motion

$$
0 = \underbrace{\widetilde{xE}_{2T} + \widetilde{H}}_{\text{14}} - F_{14}^{(1)} + \int d^2k_T \frac{\Delta^i}{\Delta_T^2} \left(\mathcal{M}_{++}^{i,S} - \mathcal{M}_{--}^{i,S} \right)
$$

GPDs are not affected by staple

Back to staple gauge link and LIR violating term

Equation of Motion

$$
0 = x\widetilde{E}_{2T} + \widetilde{H} - F_{14}^{(1)} + \int d^2k_T \frac{\Delta^i}{\Delta_T^2} \left(\mathcal{M}_{++}^{i,S} - \mathcal{M}_{--}^{i,S} \right)
$$

GPDs are not affected by staple

$$
\frac{dF_{14}^{(1)}}{dx} = \widetilde{E}_{2T} + H + E + \mathcal{A}_{F_{14}}
$$

Back to staple gauge link and LIR violating term

Equation of Motion

$$
0 = x\widetilde{E}_{2T} + \widetilde{H} - F_{14}^{(1)} + \int d^2k_T \frac{\Delta^i}{\Delta_T^2} \left(\mathcal{M}_{++}^{i,S} - \mathcal{M}_{--}^{i,S} \right)
$$

GPDs are not affected by staple

$$
\frac{dF_{14}^{(1)}}{dx} = \widetilde{E}_{2T} + H + E + \mathcal{A}_{F_{14}}
$$

$$
\mathcal{A}_{F_{14}}(x) = \frac{d}{dx} \left(\mathcal{M}_{F_{14}} - \mathcal{M}_{F_{14}} \right|_{v=0})
$$

Connects completely unintegrated quark quark correlator to qgq correlator!

$$
\mathcal{A}_{F_{14}}(x) = v^{-\frac{(2P^{+})^{2}}{M^{2}}} \int d^{2}k_{T} \int dk^{-} \left[\frac{k_{T} \cdot \Delta_{T}}{\Delta_{T}^{2}} (A_{11} + x A_{12}) + A_{14} \right] B.
$$
 Kriesten, S. Liuti
+
$$
\frac{k_{T}^{2} \Delta_{T}^{2} - (k_{T} \cdot \Delta_{T})^{2}}{\Delta_{T}^{2}} \left(\frac{\partial A_{8}}{\partial (k \cdot v)} + x \frac{\partial A_{9}}{\partial (k \cdot v)} \right) \right]
$$
 (in progress)

What violates the WW relations?

$$
\widetilde{E}_{2T} \;=\; -\int_{x}^{1} \frac{dy}{y}(H+E) \,-\left[\frac{\widetilde{H}}{x} - \int_{x}^{1} \frac{dy}{y^{2}} \widetilde{H}\right] - \left[\frac{1}{x} \mathcal{M}_{F_{14}} - \int_{x}^{1} \frac{dy}{y^{2}} \mathcal{M}_{F_{14}}\right] - \int_{x}^{1} \frac{dy}{y} \mathcal{A}_{F_{14}}
$$

$$
2\widetilde{H}_{2T}' + E_{2T}' = -\int_{x}^{1} \frac{dy}{y} \widetilde{H} - \left[\frac{H}{x} - \int_{x}^{1} \frac{dy}{y^{2}} H\right] + \frac{m}{M} \left[\frac{1}{x} (2\widetilde{H}_{T} + E_{T}) - \int_{x}^{1} \frac{dy}{y^{2}} (2\widetilde{H}_{T} + E_{T})\right] - \left[\frac{1}{x} \mathcal{M}_{G_{11}} - \int_{x}^{1} \frac{dy}{y^{2}} \mathcal{M}_{G_{11}}\right] + \int_{x}^{1} \frac{dy}{y} \mathcal{A}_{G_{11}}
$$

$$
\begin{aligned}\n\widetilde{E}_{2T} &= \widetilde{E}_{2T}^{WW} + \widetilde{E}_{2T}^{(3)} + \widetilde{E}_{2T}^{LIR} \\
\overline{E}_{2T}' &= \overline{E}_{2T}^{'WW} + \overline{E}_{2T}^{'(3)} + \overline{E}_{2T}^{'LIR} + \overline{E}_{2T}^{'m}\n\end{aligned}
$$

Calculating the torque from Lattice

Phys. Rev. D95 (2017)

Longitudinally polarized proton

$$
\mathcal{L}_{JM}-\mathcal{L}_{Ji}=\mathcal{T}
$$

Torque!

Calculating the force from Lattice data – Sivers function

$$
\frac{d}{dv^-} \int dx F_{12}^{(1)} \Big|_{v^- = 0} = \frac{d}{dv^-} \int dx M_{F_{12}} \Big|_{v^- = 0} = i(2P^+) \int dx x \frac{\Delta_i}{\Delta_T^2} \left(\mathcal{M}_{++}^{i, A} - \mathcal{M}_{--}^{i, A} \right) = \mathcal{M}_{G_{12}}^{n=3}
$$
\n
$$
\frac{d}{dv^-} \int dx G_{12}^{(1)} \Big|_{v^- = 0} = \frac{d}{dv^-} \int dx M_{G_{12}} \Big|_{v^- = 0} = i(2P^+) \int dx x \frac{\Delta_i}{\Delta_T^2} \left(\mathcal{M}_{++}^{i, S} + \mathcal{M}_{--}^{i, S} \right) = \mathcal{M}_{F_{12}}^{n=3}
$$

The derivative with respect to the gauge link direction gives the force!

Transversely polarized proton

W. Armstrong, F. Aslan, M. Burkardt, M. Engelhardt, B. Kriesten, S. Liuti and A. Rajan (in progress)

Extending to the Chiral Odd Sector

$$
\frac{\left(\frac{dh_{1L}^{(1)}}{dx} = h_1 - h_L\right)}{\left(\text{Off forward}\right)}
$$
 LIR
\n
$$
\frac{dH_{17}^{(1)}}{dx} = H_T - \frac{\Delta_T^2}{4M^2}E_T - \tilde{H}_2'
$$
\n
$$
-x\tilde{H}_2' - \int d^2k_T \frac{(k_T \times \Delta_T)^2}{M^2 \Delta_T^2} H_{17} + \frac{m}{M}\tilde{H} - \frac{1}{2M}\int d^2k_T \left(\mathcal{M}_{++}^{\gamma^+ \gamma^5 A} - \mathcal{M}_{--}^{\gamma^+ \gamma^5 A}\right) = 0
$$
 EOM

 $\Gamma=\gamma^+,\gamma^+\gamma^5$

for connecting chiral odd GPDs and GTMDs

$$
0 = \int \frac{dz_{in}^{-} d^2 z_{in,T}}{(2\pi)^3} \int \frac{dz_{out}^{-} d^2 z_{out,T}}{(2\pi)^3} e^{ik(z_{out}-z_{in})+i\Delta(z_{out}+z_{in})/2} \cdot \langle p', \Lambda' | \bar{\psi}(z_{in}) [(i\overleftrightarrow{D}+m)\Gamma U \pm \Gamma U(iD-m)] \psi(z_{out}) | p, \Lambda \rangle |_{z_{in}^{+}=z_{out}^{+}=0}
$$

$$
W^{[\gamma_T^j]} = \frac{M}{P^+} \left[\left(\frac{k_T^j}{M} f^\perp + \frac{i \Lambda \epsilon^{ij} k_T^i}{M} f_L^\perp \right) \delta_{\Lambda \Lambda'} + \left(\frac{k^j (\Lambda k_1 + ik_2)}{M^2} f_T^\perp + (\Lambda \delta_{j1} + i \delta_{j2}) f_T' \right) \delta_{-\Lambda \Lambda'} \right]
$$

$$
\stackrel{\int d^2 k_T}{\longrightarrow} -\frac{M}{P^+} (\Lambda \delta_{j1} + i \delta_{j2}) H_{2T} \delta_{-\Lambda \Lambda'}
$$

$$
W^{[\gamma_T^j \gamma^5]} = \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^i}{M} g^\perp + \Lambda \frac{k_T^j}{M} g_L^\perp \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g_T' + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g_T^\perp \right) \delta_{-\Lambda \Lambda'} \right]
$$

$$
\stackrel{\int d^2 k_T}{\longrightarrow} \frac{M (\delta_{j1} + i \Lambda \delta_{j2})}{P^+} g_T \delta_{-\Lambda \Lambda'}
$$

$$
W^{[\gamma_T^j]} = \frac{M}{P^+} \left[\left(\frac{k_T^j}{M} f^\perp + \frac{i \Lambda \epsilon^{ij} k_T^i}{M} f_L^\perp \right) \delta_{\Lambda \Lambda'} + \left(\frac{k^j (\Lambda k_1 + ik_2)}{M^2} f_T^\perp + (\Lambda \delta_{j1} + i \delta_{j2}) f_T' \right) \delta_{-\Lambda \Lambda'} \right]
$$

$$
\xrightarrow{\int d^2 k_T} -\frac{M}{P^+} (\Lambda \delta_{j1} + i \delta_{j2}) H_{2T} \delta_{-\Lambda \Lambda'}
$$

$$
W^{[\gamma_T^j \gamma^5]} = \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^i}{M} g^\perp + \Lambda \frac{k_T^j}{M} g_L^\perp \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g_T' + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g_T^\perp \right) \delta_{-\Lambda \Lambda'} \right]
$$

$$
\xrightarrow{\int d^2 k_T} \frac{M(\delta_{j1} + i \Lambda \delta_{j2})}{P^+} g_T \delta_{-\Lambda \Lambda'}
$$

$$
W^{[\gamma^-]} = \frac{M^2}{(P^+)^2} \left[f_3 \delta_{\Lambda \Lambda'} + \frac{\Lambda k_1 + ik_2}{M} f_{3T}^{\perp} \delta_{-\Lambda \Lambda'} \right]
$$

$$
\xrightarrow{\int d^2 k_T} \frac{M^2}{(P^+)^2} f_3 \delta_{\Lambda \Lambda'} \qquad (P^+)^2 \left[\Lambda g_{3L} \delta_{\Lambda \Lambda'} + \frac{k_1 + i \Lambda k_2}{M} g_{3T} \delta_{-\Lambda \Lambda'} \right]
$$

$$
\xrightarrow{\int d^2 k_T} \frac{M^2}{(P^+)^2} \Lambda g_{3L} \delta_{\Lambda \Lambda'} \qquad (P^+)^2 \Delta g_{3L} \delta_{\Lambda \Lambda'}
$$

$$
W^{[\gamma_T^j]} = \frac{M}{P^+} \left[\left(\frac{k_T^j}{M} f^{\perp} + \frac{i \Lambda \epsilon^{ij} k_T^i}{M} f_L^{\perp} \right) \delta_{\Lambda \Lambda'} + \left(\frac{k^j (\Lambda k_1 + ik_2)}{M^2} f_T^{\perp} + (\Lambda \delta_{j1} + i \delta_{j2}) f_T' \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
V^{[\gamma_T^j \gamma^5]} = \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^i}{M} g^{\perp} + \Lambda \frac{k_T^j}{M} g_L^{\perp} \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g_T' + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g_T^{\perp} \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
V^{[\gamma_T^j \gamma^5]} = \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^i}{M} g^{\perp} + \Lambda \frac{k_T^j}{M} g_L^{\perp} \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g_T' + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g_T \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
W^{[\gamma - \gamma^5]} = \frac{M^2}{(P^+)^2} \left[\Lambda g_{3L} \delta_{\Lambda \Lambda'} + \frac{k_1 + i \Lambda k_2}{M} g_{3T} \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
V^{[\gamma - \gamma^5]} = \frac{M^2}{(P^+)^2} \left[\Lambda g_{3L} \delta_{\Lambda \Lambda'} + \frac{k_1 + i \Lambda k_2}{M} g_{3T} \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
V^{[\gamma - \gamma^5]} = \frac{M^2}{(P^+)^2} \left[\Lambda g_{3L} \delta_{\Lambda \Lambda'} + \frac{k_1 + i \Lambda k_2}{M} g_{3T} \delta_{-\Lambda \Lambda'} \right]
$$

$$
W^{[\gamma_T^j]} = \frac{M}{P^+} \left[\left(\frac{k_T^j}{M} f^{\perp} + \frac{i \Lambda \epsilon^{ij} k_T^k}{M} f^{\perp}_L \right) \delta_{\Lambda \Lambda'} + \left(\frac{k^j (\Lambda k_1 + ik_2)}{M^2} f^{\perp}_T + (\Lambda \delta_{j1} + i \delta_{j2}) f^{\prime}_T \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
\frac{f^{a k_T}}{r} - \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^k}{M} g^{\perp} + \Lambda \frac{k_T^j}{M} g^{\perp}_L \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g^{\prime}_T + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g^{\perp}_T \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
\frac{f^{a k_T}}{r} - \frac{M}{P^+} \left[\left(\frac{i \epsilon^{ij} k_T^k}{M} g^{\perp} + \Lambda \frac{k_T^j}{M} g^{\perp}_L \right) \delta_{\Lambda \Lambda'} + \left((\Lambda \delta_{j1} + i \delta_{j2}) g^{\prime}_T + \frac{k_T^j (\Lambda k_1 + ik_2)}{M^2} g^{\perp}_T \right) \delta_{-\Lambda \Lambda'} \right]
$$
\n
$$
= \frac{f^{a k_T}}{r} - \frac{M^2}{r} \left[\frac{f^{a k_T}}{r} \right] \frac{f^{a k_T}}{r} - \
$$

Summary

- Showed a way of deriving Wandzura Wilczek relations. Allows us to write out the quark gluon quark contribution to twist three GPDs precisely. Study the x dependence.
- Gluons play a key role in describing the properties of the nucleon.

Collinear Picture: Transverse Quark Current, Higher Twist

$$
\bar{\psi}(-z/2)\gamma^{+}\psi(z/2) \longrightarrow
$$
 leading order quark current

 \rightarrow Transverse quark current, implicitly involves quark gluon interactions

Probabilistic parton model interpretation works well at leading order, with transverse quark projection operator need to include quark gluon interactions

Both in Collinear Picture

Quark gluon quark contributions

