Successes and Challenges in quasi-PDFs

Martha Constantinou

Temple University

QCD Evolution Argonne National Laboratory May 13, 2019

Work within ETMC: Extended Twisted Mass Collaboration

C. Alexandrou Univ. of Cyprus/Cyprus Institute K. Cichy Adam Mickiewicz University \triangleright **K. Hadjiyiannakou Cyprus Institute K. Jansen DESY, Zeuthen H. Panagopoulos University of Cyprus A. Scapellato University of Cyprus F. Steffens** University of Bonn

T

Work within ETMC: Extended Twisted Mass Collaboration
 ω^{red} ^{d Twiste}d
 ω^{red}
 Extended Twisted Mass Collaboration
 Extended Twisted Mass Collaboration C. Alexandrou Univ. of Cyprus/Cyprus Institute K. Cichy Adam Mickiewicz University K. Hadjiyiannakou Cyprus Institute D **K. Jansen DESY, Zeuthen H. Panagopoulos University of Cyprus A. Scapellato University of Cyprus F. Steffens** University of Bonn

Relevant publications:

- **M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagopoulos, F. Steffens, Nucl. Phys. B 923 (2017) 394 (Frontiers Article), [arXiv:1706.00265]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. Lett, 121 (2018) 112001, [arXiv:1803.02685]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. D 98 (2018) 091503 (Rapid Communication), [arXiv:1807.00232]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens, PRD (under review), [arXiv:1902.00587]**

Work within ETMC: Extended Twisted Mass Collaboration
 ω^{red} ^{d Twiste}d
 ω^{red}
 Exclosion
 Exclosion
 Exclosion
 Exclosion
 Exclosion
 Exclosion
 Exclosion C. Alexandrou Univ. of Cyprus/Cyprus Institute K. Cichy **Adam Mickiewicz University** D **K. Hadjiyiannakou Cyprus Institute** D **K. Jansen DESY, Zeuthen H. Panagopoulos University of Cyprus A. Scapellato University of Cyprus F. Steffens** University of Bonn

Revealed

renormalization pattern

Relevant publications:

M. Constantinou 2

- **M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagopoulos, F. Steffens, Nucl. Phys. B 923 (2017) 394 (Frontiers Article), [arXiv:1706.00265]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. Lett, 121 (2018) 112001, [arXiv:1803.02685]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. D 98 (2018) 091503 (Rapid Communication), [arXiv:1807.00232]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens, PRD (under review), [arXiv:1902.00587]**

Work within ETMC: Extended Twisted Mass Collaboration
 $\frac{1}{2}$ and $\frac{1}{2}$ and **C. Alexandrou Univ. of Cyprus/Cyprus Institute K. Cichy Mickiewicz University** D **K. Hadjiyiannakou Cyprus Institute** D **K. Jansen DESY, Zeuthen H. Panagopoulos University of Cyprus A. Scapellato University of Cyprus F. Steffens** University of Bonn

Revealed

renormalization pattern

First complete

Relevant publications:

M. Constantinou 2

- **M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagopoulos, F. Steffens, Nucl. Phys. B 923 (2017) 394 (Frontiers Article), [arXiv:1706.00265]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. Lett, 121 (2018) 112001, [arXiv:1803.02685] work at physical point**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, F. Steffens, Phys. Rev. D 98 (2018) 091503 (Rapid Communication), [arXiv:1807.00232]**
- **C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens, PRD (under review), [arXiv:1902.00587]**

A. Introduction

B. quasi-PDFs on the lattice

C. Success and Challenge of lattice quasi-PDFs

- **1. Lattice Matrix Elements**
- **2. Systematic uncertainties**
- **3. Renormalization**
- **4. Fourier transform**
- **5. Matching**
- **6. Comparison with global fits**

D. Summary

Parton Distribution Functions

- **Universal tools to study hadron structure (1-D)**
- **Global fit analyses of DIS data:** ◈ **main source of information**
- **Global fits not without ambiguities** ●

Calculation from first principle imperative

- **PDFs parameterized in terms of off-forward matrix elements of non-local light-cone operators (Not accessible in Euclidean lattice)**
- **Lattice QCD: long-standing history of moments of PDFs (via OPE), but reconstruction of PDFs not feasible (gauge noise, mixing)**
- **Alternative approaches proposed, e.g.: quasi-PDFs, good lattice cross sections high moments (auxiliary heavy quark), hadronic tensor, OPE w/o OPE**
- **4 M. Constantinou All methods are under investigation in lattice QCD (See talks of this meeting)**

Advances in High Energy Physics

Invited review in special issue:

"Transverse Momentum Dependent Observables from Low to High Energy: Factorization, Evolution, and Global Analyses"

> A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results

> > Krzysztof Cichy¹, Martha Constantinou^{2 a}

Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

² Department of Physics, Temple University, Philadelphia, PA 19122 - 1801, USA

Accepted in Advances in HEP, arXiv:1811.07248

A. Introduction

B. quasi-PDFs on the lattice

C. Success and Challenge of lattice quasi-PDFs 1. Lattice Matrix Elements 2. Systematic uncertainties 3. Renormalization 4. Fourier transform 5. Matching 6. Comparison with global fits

D. Summary

Matrix elements of spatial operators with fast moving hadrons $\tilde{q}(x,\mu^2,P_3) =$ *dz* 4*π* $e^{-ixP_3z} \langle N(P_3) | \Psi(z) \Gamma \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$

Matrix elements of spatial operators with fast moving hadrons $\tilde{q}(x,\mu^2,P_3) =$ *dz* 4*π* $e^{-ixP_3z} \langle N(P_3) | \Psi(z) \Gamma \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$

Matrix elements of spatial operators with fast moving hadrons $\tilde{q}(x,\mu^2,P_3) =$ *dz* 4*π* $e^{-ixP_3z} \langle N(P_3) | \Psi(z) \Gamma \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$

 Separation between source and sink: excited states investigation Current insertion: unpolarized, helicity, transversity

Matrix elements of spatial operators with fast moving hadrons $\tilde{q}(x,\mu^2,P_3) =$ *dz* 4*π* $e^{-ixP_3z} \langle N(P_3) | \Psi(z) \Gamma \mathcal{A}(z,0) \Psi(0) | N(P_3) \rangle_{\mu^2}$

- **Separation between source and sink: excited states investigation**
- **Current insertion: unpolarized, helicity, transversity**

Contact with light-cone PDFs feasible:

- **Matching procedure in large momentum EFT (LaMET) to relate quasi-PDFs to light-cone PDF**
- **Difference reduced as P₃ increases** $\mathcal{O}\left(\Lambda_{\text{QCD}}^2/P_3^2, m_N^2/P_3^2\right)$

First Success: exploratory studies feasible

- **Prior 2017 lattice calculations missing two main ingredients, preventing comparison with phenomenological data on PDFs**
	- ! **Renormalizability / renormalization**
	- ! **Appropriate matching expressions for lattice data**
- **Calculations significantly improved and extended to other hadrons Recent review: K. Cichy, M. Constantinou, AHEP, [arXiv:1811.07248]**

Lattice studies of quasi-PDFs

Lattice studies of quasi-PDFs

M. Constantinou

9

Multi-component calculation of quasi-PDFs $C^{3pt}(t, \tau, 0, \overrightarrow{P})$ ⃗ $C^{2pt}(t, 0, P)$ ⃗ 0 < < *τ* < < *t* = $h_0(P_3, z)$ **B. Construction of ratios in forward limit C. Renormalization (complex functions, presence of mixing)** $\tilde{q}(x, \mu^2, P_3) =$ *dz* 4*π eixP*3*^z* ⟨*N*|*ψ*(*z*)Γ(*z*,0)*ψ*(0)|*N*⟩ **D. Fourier transform to momentum space (***x***)** $q(x, \mu) = \begin{bmatrix} \mu & \mu \\ \mu & \nu \end{bmatrix}$ ∞ −∞ *dξ* |*ξ*| *^C* (*ξ*, *μ* $\left(\frac{r}{xP_3}\right)^{\tilde{q}}$ $\overline{\mathcal{L}}$ *x ξ* , *^μ*, *^P*3) **E. Matching to light-cone PDFs (LaMET) F. Target mass corrections (elimination of residual m_N/P₃) A. Calculation of matrix elements with fast moving hadrons** $C^{2pt} = \langle N | N \rangle$ $C^{3pt} = \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N \rangle$

Multi-component calculation of quasi-PDFs $C^{3pt}(t, \tau, 0, \overrightarrow{P})$ ⃗ $C^{2pt}(t, 0, P)$ ⃗ 0 < < *τ* < < *t* = $h_0(P_3, z)$ **B. Construction of ratios in forward limit C. Renormalization (complex functions, presence of mixing)** $\tilde{q}(x, \mu^2, P_3) =$ *dz* 4*π eixP*3*^z* ⟨*N*|*ψ*(*z*)Γ(*z*,0)*ψ*(0)|*N*⟩ **D. Fourier transform to momentum space (***x***)** $q(x, \mu) = \begin{bmatrix} \mu & \mu \\ \mu & \nu \end{bmatrix}$ ∞ −∞ *dξ* |*ξ*| *^C* (*ξ*, *μ* $\left(\frac{r}{xP_3}\right)^{\tilde{q}}$ $\overline{\mathcal{L}}$ *x ξ* , *^μ*, *^P*3) **E. Matching to light-cone PDFs (LaMET) F. Target mass corrections (elimination of residual m_N/P₃) A. Calculation of matrix elements with fast moving hadrons** $C^{2pt} = \langle N | N \rangle$ $C^{3pt} = \langle N | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N \rangle$ **Each step has systematic uncertainties and challenges !**

M. Constantinou 10

Parameters of ETMC calculation

[**C. Alexandrou et al., (PRL), arXiv:1803.02685]**, [**C. Alexandrou et al., arXiv:1807.00232]**

Nf=2 twisted mass fermions & clover term

Ensemble parameters:

T

Parameters of ETMC calculation

[**C. Alexandrou et al., (PRL), arXiv:1803.02685]**, [**C. Alexandrou et al., arXiv:1807.00232]**

Nf=2 twisted mass fermions & clover term

Ensemble parameters:

Nucleon momentum & statistics:

Parameters of ETMC calculation

[**C. Alexandrou et al., (PRL), arXiv:1803.02685]**, [**C. Alexandrou et al., arXiv:1807.00232]**

Nf=2 twisted mass fermions & clover term

Ensemble parameters:

Nucleon momentum & statistics:

Excited states investigation:

 $T_{\text{sink}} = 8a, 9a, 10a, 12a, \qquad (T_{\text{sink}} = 0.75, 0.84, 0.94, 1.13, \text{fm})$

Investigation of systematic uncertainties

On a single ensemble:

- **Excited states contamination**
- **Pion mass (with simulations at physical point)**
- **Renormalization and mixing**
- **《 Reconstruction of PDFs**

Using multiple ensembles:

- **Cut-off effects due to finite lattice spacing**
- **Finite volume effects**
- **^参 Pion mass dependence**

Investigation of systematic uncertainties

On a single ensemble:

- **Excited states contamination**
- **Pion mass (with simulations at physical point)**
- **Renormalization and mixing**
- **Reconstruction of PDFs**

Using multiple ensembles:

- **Cut-off effects due to finite lattice spacing

Finite volume effects

Pion mass dependence

Pion mass dependence**
- **Finite volume effects**
-

Effects reduced in single ensemble with appropriate parameters

- **Noise-to-signal ratio increases with:**
- **★ Hadron momentum boost**
- **★ Simulations at the physical point**
- **★ Source-sink separation**

- **Noise-to-signal ratio increases with:**
- **★ Hadron momentum boost**
- **★ Simulations at the physical point**
- **★ Source-sink separation**

Noise problem must be tamed to investigate uncertainties

- **Noise-to-signal ratio increases with:**
- **★ Hadron momentum boost**
- **★ Simulations at the physical point**
- **★ Source-sink separation**

Noise problem must be tamed to investigate uncertainties

Momentum smearing [G. Bali et al., PRD93, 094515 (2016)]

- **Noise-to-signal ratio increases with:**
- **★ Hadron momentum boost**
- **★ Simulations at the physical point**
- **★ Source-sink separation**

Noise problem must be tamed to investigate uncertainties

- **Noise-to-signal ratio increases with:**
- **★ Hadron momentum boost**
- **★ Simulations at the physical point**
- **★ Source-sink separation**

Noise problem must be tamed to investigate uncertainties

Despite the improvement in the signal, there are limitations in maximum momentum due to computational cost

 ν

Despite the improvement in the signal, there are limitations in maximum momentum due to computational cost

★ pseudo-PDFs: mπ=440MeV, P3 < 2GeV, Tsink~1.3fm

T

Despite the improvement in the signal, there are limitations in maximum momentum due to computational cost

★ pseudo-PDFs: mπ=440MeV, P3 < 2GeV, Tsink~1.3fm

★ Good lattice cross-sections: R. Sufian, CFNS Lattice \parallel **
 m**_π=413MeV, T_{sink}<2fm, P₃=1.53 GeV

Despite the improvement in the signal, there are limitations in maximum momentum due to computational cost

★ pseudo-PDFs: mπ=440MeV, P3 < 2GeV, Tsink~1.3fm

★ Good lattice cross-sections: m_π=413MeV, T_{sink}<2fm, P₃=1.53 GeV

★ Valence Pion PDF mπ=300MeV, Tsink=0.72fm, P3=1.7MeV

Despite the improvement in the signal, there are limitations in maximum momentum due to computational cost

★ pseudo-PDFs: mπ=440MeV, P3 < 2GeV, Tsink~1.3fm

★ Good lattice cross-sections: m_π=413MeV, T_{sink}<2fm, P₃=1.53 GeV

★ Valence Pion PDF mπ=300MeV, Tsink=0.72fm, P3=1.7MeV

No shortcuts to reliable estimates

A. Introduction

B. quasi-PDFs on the lattice

C. Success and Challenge of lattice quasi-PDFs

- **1. Lattice Matrix Elements**
- **2. Systematic uncertainties**
- **3. Renormalization**
- **4. Fourier transform**
- **5. Matching**
- **6. Comparison with global fits**

D. Summary

Unpolarized:

- **Initial studies used** *γμ* **in same direction with Wilson line**
- **Mixing with higher twist revealed perturbatively**

Unpolarized:

- **Initial studies used** *γ***μ in square direction with Wilson line**
- **Initial studies used** γ^{μ} **in schooned** ction with Wi
Mixing with higher **Abandoned** perturbatively

Unpolarized:

- **Initial studies used** *γ***μ in square direction with Wilson line**
- **Initial studies used** γ^{μ} **in schooned** ction with Wi
Mixing with higher **Abandoned** perturbatively
- **No mixing for** *γ0* **(perpendicular to Wilson line)**

[**M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]**

Unpolarized:

- **Initial studies used** *γ***μ in square direction with Wilson line Initial studies used** γ^{μ} **in schooned** ction with Wi
Mixing with higher **Abandoned** perturbatively
-
- **No mixing for** *γ0* **(perpendicular to Wilson line)**

[**M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, [arXiv:1705.11193]**

16

 Similar general features for polarized and transversity Highest priority: deliver reliable results

Challenge #1

How do we control contamination from excited states effects for fast moving nucleons?

T

Analyses techniques: Single-state fit, Two-state fit, Summation method

T

Analyses techniques: Single-state fit, Two-state fit, Summation method

Conclusions:

- **Tsink=8a heavily contaminated by excited states**
- **Tsink=9a-10a not consistent with Tsink=12 within uncertainties**
- **! Crucial to have same error for reliable 2-state fit**
- **! Excited states worsen as momentum** *P* **increases**
- **! For momenta in this work, Tsink=1fm is safe**

Analyses techniques: Single-state fit, Two-state fit, Summation method

Such level of information is necessary to study excited states

Conclusions:

- **Tsink=8a heavily contaminated by excited states**
- **Tsink=9a-10a not consistent with Tsink=12 within uncertainties**
- **! Crucial to have same error for reliable 2-state fit**
- **! Excited states worsen as momentum** *P* **increases**
- **! For momenta in this work, Tsink=1fm is safe**

 Non-predictable behavior (depends in *z* **value) Real and imaginary part affected differently** \$

T

 Non-predictable behavior (depends in *z* **value) Real and imaginary part affected differently**

Conclusions:

Excited states uncontrolled for Tsink <1fm

6 **Multi-sink analysis demands same accuracy for all data**

T

Major Success: Renormalization

Critical part of calculation:

Elimination of power and logarithmic divergences and dependence on regulator

Renormalizability proven to all orders in perturbation theory X. Ji, J. H. Zhang and Y. Zhao, Phys. Rev. Lett. 120, no. 11 (2018) 112001 [arXiv:1706.08962]

T. Ishikawa, Y. Q. Ma, J. W. Qiu, S. Yoshida, Phys. Rev. D 96, no. 9 (2017) 094019 [arXiv:1707.03107] J. Green, K. Jansen, F. Steffens, Phys. Rev. Lett. 121 022004 (2018), [arXiv:1707.07152]

Identification and elimination of mixing (lattice pert. theory)

 M. Constantinou, "Renormalization Issues on Long-Link Operators", GHP meeting, Feb. 2, 2017 [M. Constantinou, H. Panagopoulos, Phys. Rev. D 96 (2017) 054506, arXiv:1705.11193] [C.Alexandrou et al., Nucl. Phys. B 923 (2017) 394 (Frontiers Article), arXiv:1706.00265]

Proposed scheme (and variations) now used in most studies

Renormalization scheme:

 $\frac{Z^{\text{RI}'}_{\mathcal{O}}(z,\mu_0,m_\pi)}{Z^{\text{RI}'}_{a}(\mu_0,m_\pi)}\frac{1}{12}\text{Tr}\left[\mathcal{V}(z,p,m_\pi)\left(\mathcal{V}^{\text{Born}}(z,p)\right)^{-1}\right]\Big|_{p^2=\mu_0^2} = 1\\ \left. Z^{\text{RI}'}_{q}(\mu_0,m_\pi)\frac{1}{12}\text{Tr}\left[(S(p,m_\pi))^{-1}S^{\text{Born}}(p)\right]\right|_{p^2=\mu_0^2} = 1\\ \left. Z^{\text{RI}'}_{q}(\mu_0,m_\pi)\frac{1}{12}\text{Tr}\$

20

RI'-type, employed non-perturbatively

Applicable for cases of mixing

Pert. theory used for conversion to MSbar scheme

M. Constantinou

Systematics in Renormalization functions

- **Several ensembles for chiral extrapolation**
- **Several RI renormalization scales to convert to MSbar and remove residual dependence on initial scale**
- **Volume effects**
- **Conversion to Modified MS (MMS) scheme**
- **Subtraction of discretization artifacts in Zq Subtraction to** $\mathcal{O}(g^2 a^{\infty})$ completed

Challenge #2

How to reconstruct the PDF (Fourier transform) from a discrete small number of data?

Alternative Fourier

 Standard Fourier (SF):

$$
\tilde{q}(x) = 2P_3 \int_{-z_{\text{max}}}^{z_{\text{max}}} \frac{dz}{4\pi} e^{ixzP_3} h(z)
$$

can be written using integration by parts (DF):

$$
\tilde{q}(x) = h(z) \frac{e^{ixzP_3}}{2\pi ix} \Big|_{z_{\text{max}}}^{z_{\text{max}}} - \int_{-z_{\text{max}}}^{z_{\text{max}}} \frac{dz}{2\pi} \frac{e^{ixzP_3}}{ix} h'(z)
$$

 [H.W. Lin et al., arXiv:1708.05301]

- **Surface term ignored, but contribution non-negligible if matrix elements have not decayed to zero at some z_{max}**
- \bullet The 1/x in the surface term may lead to uncontrolled effect **for small values of x**

Alternative Fourier

Both SF and DF use the same lattice data

- **Truncation at z_{max} (SF) vs neglecting surface term (DF) (latter non-negligible numerically)**
- **Oscillations slightly reduced for DF, but small-x not well-behaved**
- **SF, DF different systematics, DF may have enhanced cut-off effects**

Advanced reconstruction promising approach:

J. Karpie et al., JHEP (in press), arXiv:1901.05408

Challenge #3

Is matching to light-cone PDFs unique?

Matching

- **Variety of prescriptions for quasi-PDFs in:**
	- ! **MSbar scheme**
	- ! **RI-type scheme**
	- ! **MMS scheme**
		- ! **Ratio scheme**
- **Modified prescription (MMS) in C. Alexandrou et al. (ETMC), Phys. Rev. Lett. 121, 112001 (2018), arXiv:1803.02685 compared to: T. Izubuchi et al., arXiv:1801.03917**
- **Matching MMS: normalization of the distributions preserved**

Matching

- **Variety of prescriptions for quasi-PDFs in:**
	- ! **MSbar scheme**
	- ! **RI-type scheme**
	- ! **MMS scheme**
		- ! **Ratio scheme**
- **Modified prescription (MMS) in C. Alexandrou et al. (ETMC), Phys. Rev. Lett. 121, 112001 (2018), arXiv:1803.02685 compared to: T. Izubuchi et al., arXiv:1801.03917**

Matching MMS: normalization of the distributions preserved

M. Constantinou 26

Methodology extensively discussed by F. Steffens Tue @ 3pm

Momentum dependence

Increasing momentum leads to better agreement with the global fits

- **Momentum dependence different for each type of PDFs higher-twist effects within statistical uncertainties (~5%)**
- **x~1: affected by finite nucleon momentum (milder for p=1.4 GeV)**

Comparison with global fits

Upon:

- **Fourier transform of renormalized matrix elements**
- **Matching of quasi-PDFs (LaMET)**
	- **Target Mass Corrections (***m_N* **/ P: finite) [J.W. Chen et al., NPB 911 (2016) 246, arXiv:1603.06664]**

Lattice PDF approach phenomenological fits

Negative x **region: anti-quark contribution currently suffers from enhanced uncertainties**

Transversity: See talk by F. Steffens Tue @ 3pm

What is next?

Preliminary results for larger-volume ensemble

Twisted Mass fermions with clover term

"Similar" momenta and Tsink as our previous work (study systematics)

Currently data production (statistics up to ~3,300)

T

Constantinou 3

ת"

A. Introduction

B. quasi-PDFs on the lattice

C. Success and Challenge of lattice quasi-PDFs 1. Lattice Matrix Elements 2. Systematic uncertainties 3. Renormalization 4. Fourier transform 5. Matching 6. Comparison with global fits

D. Summary

Summary

Successful implementation of the quasi-PDFs approach

- **Simulations at the physical point**
- **Identification of appropriate operators (no mixing)**
- **Addressing certain systematic uncertainties**
- **Development of non-perturbative renormalization**
- **Improving matching to light-cone PDFs**

Summary

Successful implementation of the quasi-PDFs approach

- **Simulations at the physical point**
- **Identification of appropriate operators (no mixing)**
- **Addressing certain systematic uncertainties**
- **Development of non-perturbative renormalization**
- **Improving matching to light-cone PDFs**

Challenging to eliminate systematic uncertainties

Careful assessment of systematic uncertainties Fourier transform, volume & quenching effects, continuum limit, ...

33

- **Increase of momentum seems a natural next step BUT is a major challenge if reliable results are desired**
- **Other directions should be pursued, e.g. 2-loop matching**

Summary

Successful implementation of the quasi-PDFs approach

- **Simulations at the physical point**
- **Identification of appropriate operators (no mixing)**
- **Addressing certain systematic uncertainties**
- **Development of non-perturbative renormalization**
- **Improving matching to light-cone PDFs**

Challenging to eliminate systematic uncertainties

- **Careful assessment of systematic uncertainties** Fourier transform, volume & quenching effects, continuum limit, ...
- **Increase of momentum seems a natural next step BUT is a major challenge if reliable results are desired**
- **Other directions should be pursued, e.g. 2-loop matching**

Future of quasi-PDFs defined by reliable control of uncertainties

33

"Aim for the sky, but move slowly, enjoying every step along the way. It is all those steps that make the journey complete" Chanda Kochhar

THANK YOU

BACKUP SLIDES

Renormalized Matrix Elements

 Renormalized ME do not dependent on stout smearing

M. Constantinou 36

T

Renormalized Matrix Elements

 Renormalized ME do not dependent on stout smearing

T

Transversity

[C. Alexandrou et al., arXiv:1807.00232]

$*$ **Mild dependence on nucleon momentum**

 *** Integral of PDF (g_T=1.09(11)) compatible with results from moments** [C. Alexandrou et al., Phys. Rev. D95, 114514 (2017)]

Transversity

[C. Alexandrou et al., arXiv:1807.00232]

 $*$ **Mild dependence on nucleon momentum**

- *** Integral of PDF (g_T=1.09(11)) compatible with results from moments** [C. Alexandrou et al., Phys. Rev. D95, 114514 (2017)]
- *K* Lattice data from quasi-PDFs more accurate that SIDIS
- *** SIDIS improved with g_TLat constraints, but** *ab initio* **quasi-PDFs statistically more accurate**

M. Constantinou 37

"Ratio" scheme

Alternative way to achieve current conservation, which includes a modification of the physical region. Thus, the effect on the matched **PDFs is expected to be larger numerically compared to MMS scheme**