
Argonne National Laboratory

Chao  Shi

3-D STRUCTURE OF THE PION AND KAON FROM QCD'S 
DYSON-SCHWINGER EQUATIONS.

2019.05.14@ANL !1

QCD Evolution 2019



TMD PDFs
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The TMD PDFs enter the general decomposition of the correlation function.

The TMD PDFs are defined with correlation function with finite transverse separation
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GPDs

Deeply virtual Compton scattering

AM(Ji 1997) 

IPD GPD (M. Burkardt  2000)

The generalized parton distribution introduces a finite momentum transfer Δ to the parent 
hadron, i.e,           . 

GPDsFactorization

GPDs show up in the factorization of DVCS et al. It encodes important information of 
hadrons, e.g., AM decomposition and spatial density distribution in the transverse plane.
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QCD

Transverse momentum dependent distributions (TMD) 
3-D tomography in the momentum space.


Generalized parton distributions (GPD) 
3-D picture of hadrons in the mixed spatial-momentum space.


Nonperturbative QCD (starting point of evolution)

1. ADS/QCD  
2. Dyson-Schwinger equations. 
3. Effective theories and models, e.g., NJL model... 
4.  Light front QCD. 
5.  Lattice QCD. 
 etc... 

Nonperturbative QCD methods
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QCD's DSEs
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Fig. 2.4. The Dyson-Schwinger equation for the quark self-energy.
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Fig. 2.5. The Dyson-Schwinger equation for the gluon propagator.
[Here and below the broken line represents the propagator for the ghost
field.]

ghosts have the same ZB and Zω respectively. In analogy with QED we see that ξ0 = ZBξ, since
only the transverse part of the gluon propagator is modified by vacuum polarisation [i.e., qµΠ̃µν = 0].
Here, Zg plays the role of the QED combination Zf

1 /Zf
2

√
Z3, so that in place of Zf

1 in QED we have
Zf

Γ ≡ ZgZ
f
F

√
ZB in QCD. The STIs also imply that the same renormalisation constant Zg applies to

the quark-gluon, ghost-gluon, three-gluon, and four-gluon vertices. The STIs are the reason that we do
not need other independent renormalisation constants for these couplings, [see, e.g., Itzykson and Zuber
(1980, pp. 593-594) and Muta (1987, pp. 158-179)]. We can define δmf ≡ mf

B − mf ≡ Zf
Fmf

0 − mf ≡
(Zf

F Zf
m − 1)mf as for QED, where the last result follows from the definition of Zf

m by mf
0 ≡ Zf

mmf .

The derivation of the unrenormalised and renormalised DSEs proceeds in an analogous way to that for
QED and, as already stated, these are a direct result of the BRS invariance of the theory. In Fig. 2.4 we
show the DSE for the quark self-energy. The graphical representation of the quark propagator DSE is
the same as that for the electron given in Fig. 2.2b). Figure 2.5 specifies the Dyson-Schwinger equation
for the gluon propagator and can be compared with the photon DSE in Fig. 2.1. The symmetrisation
factors of 1/2 and 1/6 arise from the usual Feynman rules, which also require a negative sign [unshown]
to be included for every fermion and ghost loop. In Fig. 2.6 we show the quark-gluon proper vertex
DSE. The notation is analogous to that used for the QED fermion-photon vertex in Fig. 2.3; i.e., the
amplitudes M, M ′, M ′′, and M ′′′ are 1-PI with respect to all external legs and do not contain any
single-gluon intermediate states.

The difficult challenge is to find an Ansatz for the unknown renormalised propagators, vertices, etc., of
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Fig. 2.2. The Dyson-Schwinger equation for the electron propagator.
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{

δSξ
δψ(x)

[

δ

iδJ
,
δ

iδη
,− δ

iδη

]

+ η(x)

}

Z[η, η, Jµ] . (2.24)

After differentiating with respect to η and setting all sources to zero [η = η = J = 0] we can rewrite
Eq. (2.24) as

(i ∂̸ − mf
0) Sf(x, y) − i(ef

0)
2
∫

ddz1 ddz2 ddz3 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, z3)S

f(z3, y) = δd(x − y) ,

(2.25)
where Dµν(x, y) is the photon propagator which couples Eq. (2.25) to Eq. (2.19). So, one sees that the
equations for the 2-point functions are coupled to each other and that both also depend on the 3-point
function, Γfµ. This is the first indication of the general rule that the DSE for an n-point function is
coupled to other functions of lesser and the same order and to functions of order (n+1) and (n+2).

The structure of Eq. (2.25) allows one to rewrite it in terms of the fermion self energy, −iΣf (x, y),
defined such that

(i ∂̸ − mf
0) Sf(x, y) −

∫

ddz1 Σf (x, z1) Sf(z1, y) = δd(x − y) (2.26)

and hence satisfying

− iΣf (x, y) = (ef
0)

2
∫

ddz1 ddz2 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, y) . (2.27)

The equation for the fermion self-energy is represented diagrammatically in Fig. 2.2a) while part b) of
this figure shows the definition of the fermion self-energy (−iΣf (p)) in terms of the fermion propagator
Sf (p) with Sf

0 (p) = 1/( p̸−mf
0) the bare fermion propagator. Again, the momentum-space form for the

proper fermion self-energy (−iΣf ) is easily obtained from Fig. 2.2a) using the usual Feynman rules [or
equivalently from Fourier transforming Eq. (2.27)] and can be written as

− iΣf (p) = (ef
0)

2
∫ ddℓ

(2π)d
(iγµ)(iS

f(ℓ))(iDµν(p − ℓ))(iΓf
ν(ℓ, p)) . (2.28)

From Fig. 2.2b) or, equivalently, from Eq. (2.26), we can solve for Sf(p) to give Sf(p) = 1/[(Sf
0 )−1 −

Σf (p)] = 1/[ p̸ − mf
0 − Σf (p)].

Unrenormalised Dyson-Schwinger equation for the Fermion-Photon Vertex. This equation can be de-
rived in a similar way. For completeness, we present it here in momentum space where it is most concisely
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Quark DSE:
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Dyson-Schwinger equations: general relations between Green functions in quantum field 
theories.

✓Quantum Field Theory

✓Path Integral formulation


Non-perturbative

2.3 Bound-state equations 15
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Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)
i ⌦ S

�1
i [65–67]. With the notation of (2.16), the kernel

eK(3) reads

eK(3) = eK(3)
irr +

3X

i=1

eK(2)
i , (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T
(n) P 2!�M2

������! N
  

P 2 + M2
, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T

(n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2
, J = 1/2 :

�i/P + M

P 2 + M2
= 2M

⇤+(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤+(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P

2 = �M
2, cf.

Fig. 2.2. An examination of the relation T
0 = �T (T�1)0 T at the bound-state pole,

where 0 denotes the derivative d/dP
2, yields the associated canonical normalization

2.3 Bound-state equations 15

𝑃� ⟶ �𝑀� ⟹ = 𝛹𝛹 𝐾

= +𝑇 𝑇𝐾𝐾

𝑇 𝛹 𝛹

Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)
i ⌦ S

�1
i [65–67]. With the notation of (2.16), the kernel

eK(3) reads

eK(3) = eK(3)
irr +

3X

i=1

eK(2)
i , (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T
(n) P 2!�M2

������! N
  

P 2 + M2
, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T

(n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2
, J = 1/2 :

�i/P + M

P 2 + M2
= 2M

⇤+(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤+(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P

2 = �M
2, cf.

Fig. 2.2. An examination of the relation T
0 = �T (T�1)0 T at the bound-state pole,

where 0 denotes the derivative d/dP
2, yields the associated canonical normalization

2.3 Bound-state equations 15

𝑃� ⟶ �𝑀� ⟹ = 𝛹𝛹 𝐾

= +𝑇 𝑇𝐾𝐾

𝑇 𝛹 𝛹

Figure 2.2: Schematic derivation of a two-body bound-state equation. The first row
illustrates Dyson’s equation (2.18). The behavior at the mass pole defines the bound-
state amplitude and leads to the corresponding bound-state equation (second row).

permuted 2-body kernels K
(2)
i ⌦ S

�1
i [65–67]. With the notation of (2.16), the kernel

eK(3) reads

eK(3) = eK(3)
irr +

3X

i=1

eK(2)
i , (2.20)

where the subscript i identifies the spectator quark. eK(3) is illustrated in Fig. 2.3.

Bound-state equations. At the pole corresponding to the bound-state mass M ,
bound-state amplitudes  are introduced as the residues of the scattering matrix via

T
(n) P 2!�M2

������! N
  

P 2 + M2
, (2.21)

where P is the total momentum of the n quarks. The possibly dimensionful constant
N accounts for the dimensionality of T

(n) and depends on the spin of the resulting
particle. For instance, the propagators of free spin-0 and spin-1/2 particles are given
by:

J = 0 :
1

P 2 + M2
, J = 1/2 :

�i/P + M

P 2 + M2
= 2M

⇤+(P )
P 2 + M2

. (2.22)

For a scalar or pseudoscalar particle: N = 1. In the spin-1/2 case, the matrix-valued
amplitude  includes the positive-energy projector ⇤+(P ) = (1+ /̂P )/2 (cf. Section 4),
where P̂ denotes the normalized total momentum; this yields N = 2M .

Inserting the pole condition (2.21) into Dyson’s equation and comparing the residues
of the most singular terms leads to a bound-state equation at the pole P

2 = �M
2, cf.

Fig. 2.2. An examination of the relation T
0 = �T (T�1)0 T at the bound-state pole,

where 0 denotes the derivative d/dP
2, yields the associated canonical normalization

• Two-body Bethe-Salpeter equation

�
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Figure 3.1: The quark DSE (3.2) in pictorial form.

The dressed quark-gluon vertex consists of 12 tensor structures and can be written as

�µ(l, k, µ) =
4X

i=1

⇣
f

(1)
i i�

µ + f
(2)
i l

µ + f
(3)
i k

µ
⌘

⌧i(l, k) , (3.5)

where the f
(j)
i (l2, l ·k, k

2
, µ

2) are Lorentz-invariant dressing functions. A possible rep-
resentation of the Dirac basis elements is given by

⌧i(l, k) = {1, /k, l/, [ l/, /k]} . (3.6)

The four longitudinal basis elements ⇠ k
µ do not survive in the quark-DSE integral

because of the transversality of the gluon propagator. Likewise, only the transverse
projections of the remaining ones provide a non-vanishing contribution. In accordance
with the notation of the quark propagator’s dressing functions, the two covariants i�

µ

and l
µ are referred to as the vector and scalar components, respectively.

Using the STIs in Landau gauge, Z1F = Z2/Z̃3 and Zg Z̃3 Z
1/2
3 = 1, where Z̃3, Z3

and Zg are ghost, gluon and charge renormalization constants, the quark self-energy
integral of Eq. (3.3) becomes

⌃(p, µ,⇤) = �
16
3

Z
2
2

⇤Z

q

i�
µ
S(q, µ)

T
µ⌫
k

k2

4X

i=1

⇣
↵

(1)
i i�

⌫ + ↵
(2)
i l

⌫
⌘

⌧i(l, k), (3.7)

where we defined the coe�cients ↵
(j)
i as combinations of the gluon dressing function

and the vertex dressings:

↵
(j)
i (l2, l·k, k

2) =
g
2

4⇡

1
Z2Z̃3

Z(k2
, µ

2) f
(j)
i (l2, l·k, k

2
, µ

2). (3.8)

They are independent of the renormalization point, as can be inferred from Zg Z̃3 Z
1/2
3 =

1 and the renormalization-scale dependence of the quantities g ⇠ 1/Zg, Z ⇠ 1/Z3 and
fi ⇠ Z2/Z̃3.

Solution of a coupled DSE system. Both gluon propagator and quark-gluon vertex
satisfy their own DSEs. Progress on a consistent solution of this system of DSEs has

Gluon propagator

Quark-gluon vertex

Scattering Kernel

• Three-body form factor equation

• One-body gap equation

2 DSE: Most frequently used equations

�µ

  ̄

The connected 4-quark scattering amplitude 
satisfies the Dyson equation

Near mass pole, the quark scattering amplitude is 
dominated by hadron's Bethe-Salpeter WF.

Meson Bethe-Salpeter equation.

https://en.wikipedia.org/wiki/Green%27s_function
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Quantum_field_theory
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Chiral symmetry and AVWTI
The hadron wave function can be solved by aligning the quark DSE and hadron BSE.

To solve these equations, truncation is needed for the vertex and scattering kernel. A 
physically reasonable truncation scheme should preserve QCD's (nearly) chiral symmetry 
by respecting the Axial-Vector Ward-Takahashi Identity

The simplest is the Rainbow-Ladder truncation

24 Mesons
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Figure 3.3: The axial-vector Ward-Takahashi identity (3.10) relates quark self-energy
and quark-antiquark kernel. Crossed circles denote a �

5 insertion.

The kernel K is the amputated quark-antiquark scattering kernel which is irreducible
with respect to a pair of qq̄ lines. Along with the quark propagator, it provides the
physical input to the meson BSE and must be known in advance to obtain a solution
for the meson’s amplitude and mass.

Rainbow-ladder truncation. The central identity which ensures the correct imple-
mentation of chiral symmetry and its dynamical breaking in a bound-state approach is
the AVWTI [68]. It provides a relation between the quark self-energy and the quark-
antiquark kernel, the latter of which appears in the meson’s bound-state equation. The
identity can be expressed as

�
�

5 ⌃(�p�) + ⌃(p+) �
5
 

↵�
= �

Z
K↵�,��(p, q, P )

�
�

5
S(�q�) + S(q+) �

5
 

��
(3.10)

and is sketched in Fig. 3.3. A qq̄ kernel which preserves the AVWTI ensures a massless
pion in the chiral limit as the Goldstone boson related to dynamical chiral symmetry
breaking. In addition, Eq. (3.10) leads to a generalization of the Gell-Mann-Oakes-
Renner relation for all pseudoscalar mesons and current-quark masses [68]. In this
respect it is imperative for any meaningful truncation of the system of DSEs and BSEs
to satisfy this identity.

A systematic procedure to formulate a qq̄ kernel which preserves the AVWTI through
functional derivatives of the quark self-energy has been introduced in [100]. Following
this prescription, several such constructions have been devised in the literature [42,
101–110].

The simplest setup which corresponds to the lowest order in such a symmetry-
preserving truncation scheme is the rainbow-ladder (RL) truncation. In this framework
the qq̄ kernel is expressed by a gluon ladder exchange, including the gluon propagator,
one bare and one ’dressed’ quark-gluon vertex. To satisfy Eq. (3.10), the dressed vertex
may however only involve Dirac basis tensors with an odd number of gamma matrices,
and it can only depend on the gluon momentum k. This leaves a vector part �

µ with
a purely k

2-dependent vertex dressing the only option in both quark DSE and meson
BSE. The resulting ladder kernel is written as

K↵�,��(p, q, P ) = Z
2
2
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The AVWTI relates the vertex Γ and kernel K
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DSEs highlights and status
Dynamical chiral symmetry breaking

Hadron spectrum

Pieter Maris and Craig D. Roberts, PRC 1997

Gernot Eichmann, PRL 2010

Jorge Segovia, et al, PRL 2015

G Eichmann, C S. Fischer, W Heupel , PLB 2016

Shu-Sheng Xu, eta al 2018

Form factors and parton distribution 
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Elastic and transition form factor

Parton distribution amplitude

Parton distribution function

GPD & TMD


Pieter Maris and Peter  Tandy, PRC 2000, 2002, 

Lei Chang, et al PRL 2013, G Eichmann PRD2011

Lei Chang, et al PRL 2013, Ian Cloet, et al, PRL 2013, 

Chao Shi et al PLB 2014, Cedric Mezrag, et al PLB 2019

Trang Nguyen, et al PRD 2011, Kyle Bednar, et al PRL (in review) 2019

(Cedric Mezrag et al PLB 2015, Chao Shi, et al PRL 2019)
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Fig. 1 Renormalisation-group-invariant dressed-quark mass function, M(p): solid curves – DSE results, ex-
plained in Refs. [30; 31], “data” – numerical simulations of lattice-regularised QCD [32]. (N.B. m = 70MeV is
the uppermost curve and current-quark mass decreases from top to bottom.) The current-quark of perturbative
QCD evolves into a constituent-quark as its momentum becomes smaller. The constituent-quark mass arises
from a cloud of low-momentum gluons attaching themselves to the current-quark. This is dynamical chiral
symmetry breaking (DCSB): an essentially nonperturbative effect that generates a quark mass from nothing ;
namely, it occurs even in the chiral limit. The size of M(0) is a measure of the magnitude of the QCD scale
anomaly in n = 1-point Schwinger functions.

must play a critical role in any explanation of confinement in the Standard Model; and any discussion
that omits reference to the pion’s role is practically irrelevant.

From this perspective, the potential between infinitely-heavy quarks measured in simulations of
quenched lQCD – the so-called static potential [35] – is disconnected from the question of confine-
ment in our Universe. This is because light-particle creation and annihilation effects are essentially
nonperturbative in QCD, so it is impossible in principle to compute a quantum mechanical potential
between two light quarks [36–38]. It follows that there is no flux tube in a Universe with light quarks
and consequently that the flux tube is not the correct paradigm for confinement.3

DCSB is the key here. It ensures the existence of (pseudo-)Nambu-Goldstone modes; and in the
presence of these modes, it is unlikely that any flux tube between a static colour source and sink can
have a measurable existence. To explain this statement, consider such a tube being stretched between
a source and sink. The potential energy accumulated within the tube may increase only until it reaches
that required to produce a particle-antiparticle pair of the theory’s pseudo-Nambu-Goldstone modes.
Simulations of lQCD show [36; 37] that the flux tube then disappears instantaneously along its entire
length, leaving two isolated colour-singlet systems. The length-scale associated with this effect in QCD
is r̸σ ≃ (1/3) fm and hence if any such string forms, it would dissolve well within a hadron’s interior.

An alternative realisation associates confinement with dramatic, dynamically-driven changes in
the analytic structure of QCD’s coloured propagators and vertices. That leads these coloured n-point
functions to violate the axiom of reflection positivity and hence forces elimination of the associated
excitations from the Hilbert space associated with asymptotic states [41]. This is a sufficient condition
for confinement [26; 42–45]. It should be noted, however, that the appearance of such alterations when
analysing some truncation of a given theory does not mean that the theory itself is truly confining:
unusual spectral properties can be introduced by approximations, leading to a truncated version of a
theory which is confining even though the complete theory is not, e.g. Refs. [46; 47]. Notwithstanding
exceptions like these, a computed violation of reflection positivity by coloured functions in a veracious
treatment of QCD does express confinement. Moreover, via this mechanism, confinement is achieved
as the result of an essentially dynamical process.

3 It is sometimes argued that hadron bound-states lie on linear Regge trajectories and there must therefore
be a flux tube. However, empirical evidence for the existence of such towers of states tied to parallel, linear
trajectories is poor, e.g. Refs. [39; 40]; the potential required to produce such trajectories is dependent both
on the frame and the quantisation-scheme employed, i.e. their appearance and nature is strongly dependent
on the model used; and no approach whose parameters can rigorously be connected with real-world QCD has
ever produced such trajectories.
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(M.S. Bhagwat et al, PRC2003)

tetraquark hybrid

m=0

M>>0
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TMDs & GPDs: Covariant approachWhy pion and kaon?
Pion (and kaon) has the dual roles of being both a QCD bound state and also the 
Goldstone boson of DCSB. DCSB contributes 99% mass in visible universe. The 
massness of proton and masslessness of pion are closely related and  both deserve 
studying.

Pion (and kaon) is among the few hadrons whose parton structure can be 
experimentally measured, through, e.g., Drell-Yan and Sullivan process (off-shell 
pion). Pion & Kaon Structure at JLab and an EIC
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At Jefferson Lab and an EIC pion and kaon structure can be accessed via the
so-called Sullivan processes

initial pion/kaon is off mass-shell – need extrapolation to pole
proven results for form factors – what about quark and gluon PDFs, TMDs, GPDs,
etc, at an EIC?

Explored this ideal at a series of workshops on “Pion and Kaon Structure at
an Electron–Ion Collider” (PIEIC)

1�2 June 2017, Argonne National Laboratory www.phy.anl.gov/theory/pieic2017/

24�25 May 2018, The Catholic University of America www.jlab.org/conferences/pieic18/
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Pion also enters the description of nucleon by meson cloud. For a 
quark-core nucleon, pion cloud reduces its mass by ~20%, 
modifies nucleon's EM radius, and provides the sea quark content 
hence its asymmetry. 

Sullivan process

Theoretically, pion and kaon have been well studied in DSEs, there is no free 
parameter, the TMDs and GPDs pose new challenge.  

ūp(x) 6= d̄p(x)
<latexit sha1_base64="/XgVOICXRIzoRDGSpZhy51cqSSM="></latexit>
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TMDs & GPDs: Covariant approach

Covariant approach: Compute the triangle diagrams in terms of 
fully covariant propagators/vertices with appropriate truncations.

Light-front approach: Extract from pion's Bethe-Salpeter wave 
functions the LFWFs and calculate TMDs and GPDs using 
overlap representation.
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Fig. 2.2. The Dyson-Schwinger equation for the electron propagator.

=

{

δSξ
δψ(x)

[

δ

iδJ
,
δ

iδη
,− δ

iδη

]

+ η(x)

}

Z[η, η, Jµ] . (2.24)

After differentiating with respect to η and setting all sources to zero [η = η = J = 0] we can rewrite
Eq. (2.24) as

(i ∂̸ − mf
0) Sf(x, y) − i(ef

0)
2
∫

ddz1 ddz2 ddz3 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, z3)S

f(z3, y) = δd(x − y) ,

(2.25)
where Dµν(x, y) is the photon propagator which couples Eq. (2.25) to Eq. (2.19). So, one sees that the
equations for the 2-point functions are coupled to each other and that both also depend on the 3-point
function, Γfµ. This is the first indication of the general rule that the DSE for an n-point function is
coupled to other functions of lesser and the same order and to functions of order (n+1) and (n+2).

The structure of Eq. (2.25) allows one to rewrite it in terms of the fermion self energy, −iΣf (x, y),
defined such that

(i ∂̸ − mf
0) Sf(x, y) −

∫

ddz1 Σf (x, z1) Sf(z1, y) = δd(x − y) (2.26)

and hence satisfying

− iΣf (x, y) = (ef
0)

2
∫

ddz1 ddz2 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, y) . (2.27)

The equation for the fermion self-energy is represented diagrammatically in Fig. 2.2a) while part b) of
this figure shows the definition of the fermion self-energy (−iΣf (p)) in terms of the fermion propagator
Sf (p) with Sf

0 (p) = 1/( p̸−mf
0) the bare fermion propagator. Again, the momentum-space form for the

proper fermion self-energy (−iΣf ) is easily obtained from Fig. 2.2a) using the usual Feynman rules [or
equivalently from Fourier transforming Eq. (2.27)] and can be written as

− iΣf (p) = (ef
0)

2
∫ ddℓ

(2π)d
(iγµ)(iS

f(ℓ))(iDµν(p − ℓ))(iΓf
ν(ℓ, p)) . (2.28)

From Fig. 2.2b) or, equivalently, from Eq. (2.26), we can solve for Sf(p) to give Sf(p) = 1/[(Sf
0 )−1 −

Σf (p)] = 1/[ p̸ − mf
0 − Σf (p)].

Unrenormalised Dyson-Schwinger equation for the Fermion-Photon Vertex. This equation can be de-
rived in a similar way. For completeness, we present it here in momentum space where it is most concisely

10
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TMD & GPD

Impulse Approximation:Pion Elastic Form Factor

� �

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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QCD hard-scattering formula – if DSE pion PDA is used

15% disagreement may be explained by higher-order corrections

At an EIC preliminary studies [Garth Huber – PIEIC 2018] suggest pion
form factor can be measured to Q

2 & 30 GeV2
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TMDs & GPDs: Covariant approach

Covariant approach: Compute the triangle diagrams in terms of 
fully covariant propagators/vertices with appropriate truncations.

Light-front approach: Extract from pion's Bethe-Salpeter wave 
functions the LFWFs and calculate TMDs and GPDs using 
overlap representation.
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Fig. 2.2. The Dyson-Schwinger equation for the electron propagator.

=

{

δSξ
δψ(x)

[

δ

iδJ
,
δ

iδη
,− δ

iδη

]

+ η(x)

}

Z[η, η, Jµ] . (2.24)

After differentiating with respect to η and setting all sources to zero [η = η = J = 0] we can rewrite
Eq. (2.24) as

(i ∂̸ − mf
0) Sf(x, y) − i(ef

0)
2
∫

ddz1 ddz2 ddz3 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, z3)S

f(z3, y) = δd(x − y) ,

(2.25)
where Dµν(x, y) is the photon propagator which couples Eq. (2.25) to Eq. (2.19). So, one sees that the
equations for the 2-point functions are coupled to each other and that both also depend on the 3-point
function, Γfµ. This is the first indication of the general rule that the DSE for an n-point function is
coupled to other functions of lesser and the same order and to functions of order (n+1) and (n+2).

The structure of Eq. (2.25) allows one to rewrite it in terms of the fermion self energy, −iΣf (x, y),
defined such that

(i ∂̸ − mf
0) Sf(x, y) −

∫

ddz1 Σf (x, z1) Sf(z1, y) = δd(x − y) (2.26)

and hence satisfying

− iΣf (x, y) = (ef
0)

2
∫

ddz1 ddz2 γµD
µν(x, z1)S

f(x, z2)Γ
f
ν(z1; z2, y) . (2.27)

The equation for the fermion self-energy is represented diagrammatically in Fig. 2.2a) while part b) of
this figure shows the definition of the fermion self-energy (−iΣf (p)) in terms of the fermion propagator
Sf (p) with Sf

0 (p) = 1/( p̸−mf
0) the bare fermion propagator. Again, the momentum-space form for the

proper fermion self-energy (−iΣf ) is easily obtained from Fig. 2.2a) using the usual Feynman rules [or
equivalently from Fourier transforming Eq. (2.27)] and can be written as

− iΣf (p) = (ef
0)

2
∫ ddℓ

(2π)d
(iγµ)(iS

f(ℓ))(iDµν(p − ℓ))(iΓf
ν(ℓ, p)) . (2.28)

From Fig. 2.2b) or, equivalently, from Eq. (2.26), we can solve for Sf(p) to give Sf(p) = 1/[(Sf
0 )−1 −

Σf (p)] = 1/[ p̸ − mf
0 − Σf (p)].

Unrenormalised Dyson-Schwinger equation for the Fermion-Photon Vertex. This equation can be de-
rived in a similar way. For completeness, we present it here in momentum space where it is most concisely
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TMDs & GPDs: Light-front approach

Figure 2: Overlap representations for SPDs in different kinematic regions for the case
ξ > 0. The flow of momenta is indicated on the lines. Top (bottom) right: the region
ξ < x̄ < 1 (−1 < x̄ < −ξ), where the SPDs are given by N → N overlaps. Middle right:
the central region −ξ < x̄ < ξ, where N + 1 → N − 1 overlaps are relevant.

3.1 The region ξ < x̄ < 1

The Fock state decomposition (8) leads to a representation of the matrix element Hq
λ′λ as

a sum over contributions from separate Fock states,

Hq
λ′λ =

∑

N

Hq(N→N)
λ′λ , (29)

with

Hq(N→N)
λ′λ =

1
√

2(1 − ξ2)

∑

c

∑

β,β′

∫
[dx̃]N [d2k̃⊥]N [dx̂′]N [d2k̂′

⊥]N Ψ∗λ′

N,β′(r̂′) Ψλ
N,β(r̃)

×
∫ dz−

2π
ei x̄ p̄ +z− ⟨N, β ′; k′

1 . . . k′
N | φ c †

q (−z̄/2)φ c
q (z̄/2) |N, β; k1, . . . , kN⟩ . (30)
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is diffi cult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Light-front QCD
QCD quantized in light front coordinate. A 
natural formalism in describing hard hadron 
scattering. The PDF, GPDs and TMDs are 
defined on (near) the null plane of light front. 

To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian. 
However, this is very difficult.

 The LFWFs encode all the non-perturbative information of the hadron's internal 
structure.                                                They are boost invariant (since e.g.,                        
) and therefore provide relativistic description of bound systems in terms of quantum-
mechanical-like wave functions.

In the light-front formalism, the hadronic state 
take a Fock-state expansion, characterized by 
light front wave functions (LFWFs).

DSEs + Light-Front Wave Functions

On light-front hadronic states can be represented by a Fock-state expansion
��⇡+

↵
=

��ud̄
↵

+
��ud̄ g

↵
+
��ud̄ gg

↵
+ . . . +

��ud̄ qq̄
↵

+
��ud̄ qq̄ g

↵
+ . . .

Associated with each Fock-state is a number of LFWFs
diagonalizing the light-cone QCD Hamiltonian operator =) LFWFs
methods include: discretized lightcone quantization, basis light-front quantization,
and holographic QCD

LFWFs can be projected from solutions to the Bethe-Salpeter equation

T = K + T K

BSE self-consistently sums an infinite number of Fock states
in rainbow-ladder, e.g, |⇡+i =

��ud̄
↵

+
��ud̄ g

↵
+
��ud̄ gg

↵
+ . . .

Obtaining LFWFs from DSE solutions of the BSE has several key features
in the DSEs emergent pheonmena, such as confinement and DCSB, arise through
the infinite sum of diagrams
these effects are encoded in DSE dressed propagators and BS amplitudes, and
therefore the projected LFWFs
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"...he (’t Hooft) did not use the light–cone formalism and which nowadays might be 
called standard. Instead, he started from covariant equations... The light–cone 
Schrodinger equation was then obtained by projecting the Bethe–Salpeter 
equation onto hyper-surfaces of equal light–cone time. In this way, one avoids to 
explicitly derive the light–cone Hamiltonian, which, as explained above, can be a 
tedious enterprise in view of complicated constraints one has to solve..." (Thomas 
Heinzl)

What we do: solve the BS equation first and then project the BS wave 
functions on to the light front!

Intrinsic Transverse Motion of the Pion's Valence Quarks  
Chao Shi and Ian C. Cloët,  
Phys.Rev.Lett. 122 (2019) no.8, 082301

Schwinger-Dyson approach
There is an alternative way to calculate the LFWFs, using DSEs!

Connect modern DSEs study with the light-front QCD.

!12

Lagrangian formalism (DSEs) + Hamiltonian formalism (LF QCD). 
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LFWFs & Bethe-Salpeter wave function
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BS wave function

Intrinsic Transverse Motion of the Pion’s Valence Quarks
Chao Shi1 and Ian C. Cloët1

1
Physics Division, Argonne National Laboratory, Argonne, IL 60439 USA

Starting with the solution to the Bethe-Salpeter equation for the pion, in a beyond rainbow-ladder truncation
to QCD’s Dyson-Schwinger equations (DSEs), we determine the pion’s lz = 0 and |lz | = 1 leading Fock-state
light-front wave functions (LFWFs) [labeled by  lz (x, k2

T )]. The leading-twist time-reversal even transverse
momentum dependent parton distribution function (TMD) of the pion is then directly obtained from these LFWFs.
A key characteristic of the LFWFs, which is driven by dynamical chiral symmetry breaking, is that at typical
hadronic scales they are broad functions in the light-cone momentum fraction x. The LFWFs have a non-trivial
(x, k2

T ) dependence and in general do not factorize into separate functions of each variable. The lz = 0 LFWF is
concave with a maximum at x = 1/2, whereas orbital angular momentum e�ects causes the |lz | = 1 LFWF to
have a slight double-humped structure for quark transverse momentum in the range 0.5 . k2

T . 5 GeV2. For
k2
T . 1 GeV2 the k2

T dependence of the LFWFs is well described by a Gaussian, however for k2
T & 10 GeV2

these LFWFs behave as  0 / x(1 � x)/k2
T and  1 / x(1 � x)/k4

T , and therefore exhibit the power-law behavior
predicted by perturbative QCD. The pion’s TMD inherits many features from the LFWFs, where for k2

T . 1 GeV2

the k2
T dependence is well described by a Gaussian, and for large k2

T the TMD behaves as f
q
⇡ / x

2(1 � x)2/k4
T .

At the model scale we find the average transverse momentum, defined by a Bessel-weighted moment with
bT = 0.3 fm, to equal

⌦
k2
T

↵
= 0.19 GeV2. The TMD evolution of our result is studied using both the b

⇤ and ⇣
prescriptions which allows a qualitative comparison with existing Drell-Yan data.

Light-front quantization and the associated light-front wave
functions (LFWFs) provide a powerful framework with which
to study quantum chromodynamics (QCD) and develop an
understanding of the parton structure of hadrons [1, 2]. Hadron
observables such as form factors, parton distribution functions
(PDFs), and their multi-dimensional counterparts such as gen-
eralized and transverse momentum dependent PDFs (TMDs)
can each be expressed as overlaps of LFWFs [3, 4]. Therefore
LFWFs allow features of apparent disparate hadron observ-
ables to be straightforwardly related to underlying quark-gluon
dynamics in a QCD Fock-state expansion. In principle, the
LFWFs can be computed by diagonalizing the light-front QCD
Hamiltonian operator, using methods such as discretized light-
cone quantization [5], or basis light-front quantization [6, 7].
However, these calculations become numerically challenging
for QCD in four space-time dimensions, therefore e�ective
interactions such as holographic QCD have been used to reduce
these di�culties [8].

Another approach used to study QCD and hadron structure,
which is explicitly Poincaré-covariant, is provided by judicious
truncations to QCD’s Dyson-Schwinger equations (DSEs) [9–
11]. In the DSE framework hadron states are obtained as
solutions to Poincaré-covariant bound-state equations such as
the Bethe-Salpeter and Faddeev equations [12, 13]. Insights into
numerous aspects of hadron structure have been revealed using
the DSEs [11, 14], with particular success in understanding
the pion as both a relativistic bound-state of a dressed quark
and dressed antiquark, and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB) in QCD [11, 15–
17]. DSE solutions to the Bethe-Salpeter equation (BSE),
which encapsulate key emergent QCD phenomena such as
DCSB and quark confinement, therefore provide an excellent
starting point from which to extract the pion’s LFWFs. In
particular, the properties of the LFWFs can then be clearly
connected to underlying quark-gluon dynamics as expressed
in the dressing functions for propagators and vertices. The
calculation of the pion’s leading Fock-state LFWFs using the

DSEs, and the application of these LFWFs to a calculation of
the pion’s leading-twist time-reversal even TMD is the main
focus of this paper. Such a study is timely because the proposed
electron-ion collider [18] has the capability to study the partonic
structure of the pion and kaon [19].

In the light-front formalism a hadron state can be expressed
as the superposition of Fock-state components classified by
their orbital angular momentum projection lz [20]. For the pion
the minimal (q̄q) Fock-state configuration reads [20, 21]:��⇡+(p)↵ = |⇡+(p)ilz=0 + |⇡+(p)i |lz |=1, (1)

where the non-perturbative content of each state is contained in
the LFWFs [4], labeled by  0(x, k2

T ) for lz = 0 and  1(x, k2
T )

for |lz | = 1, where kT is the transverse momentum of the
quark and x = k+

p+ is its light-cone momentum fraction. For
these minimal Fock-state LFWFs the antiquark has transverse
momentum �kT (in a frame where pT = 0 for the pion) and
light-cone momentum fraction 1 � x.

From the matrix element definitions of the LFWFs [20], it
can be shown that the pion’s minimal Fock-state LFWFs can
be obtained from the pion’s Poincaré-covariant Bethe-Salpeter
wave function, �(k, p), via [22]

 0(x, k2
T ) =

p
3 i

π
dk
+

dk
�

2 ⇡
⇥ TrD

⇥
�+�5 �(k, p)

⇤
�
�
x p
+ � k

+� , (2)

 1(x, k2
T ) = �

p
3 i

π
dk
+

dk
�

2 ⇡
1
k2
T

⇥ TrD
⇥
i�+ik

i
T �5 �(k, p)

⇤
�
�
x p
+ � k

+� , (3)

where the trace is over Dirac indices only. The Bethe-Salpeter
wave function for the ⇡+ is defined by the quark-antiquark
correlator �(k, p) =

Ø
d

4
z e

�ik ·z h0|Tu(z) d̄(0)|⇡+(p)i [23,
24] and can be expressed as �(k, p) = S(k) �(k, p) S(k � p),
where S(k) is the dressed quark propagator and �(k, p) the
pion’s homogeneous Bethe-Salpeter amplitude [9, 25].
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LFWFs:  0(x, k2?) &  1(x, k2?)

ψ0 and ψ1 are comparable in 
strength, suggesting the spin 
parallel qq has considerable 
contribution (relativistic system).


Strong support at infrared kT, a 
consequence of the DCSB which 
generates significant strength in the 
infrared region of BS wave function.


At ultraviolet of kT, ψ0 scale as 1/kT2  
and ψ1 scale as 1/kT4, as has been 
predicted by pQCD. 


 The x and kT dependence in the 
LFWFs are un-factorizable, namely, 
the shape of LFWFs in x changes as 
kT varies.

-
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f1,⇡(x, k
2
?) =

Z
d⇠�d2⇠?
(2⇡)3

ei(⇠
�k+�⇠?·k?)h⇡(P )|q̄(0)�+q(⇠�, ⇠?)|⇡(P )i.

Decomposition
q(+)(⇠

�, ⇠?) + q(�)(⇠
�, ⇠?)

canonical expansion

q(+)(⇠
+ = 0, ⇠�, ⇠?) =

R
d2k?
(2⇡)3

dk+

2k+

P
�[b�(k)u(k�)e

�i(k+⇠��~k?~⇠?)+d+� (k)⌫(k�)e
i(k+⇠��~k?~⇠?)]

TMD light-front overlap representation
Fock Expansion

|⇡+(P )iLz=0 =

Z
d2k?
2(2⇡)3

dxp
x(1� x)

 "#(x, k?)[b
†
u"i(x, k?)d

†
d#i(1� x,�k?)� b†u#i(x, k?)d

†
d"i(1� x,�k?)]|0i

|⇡+(P )i|Lz|=1 =

Z
d2k?
2(2⇡)3

dxp
x(1� x)

 ""(x, k?)[(k1 � ik2)b
†
u"i(x, k?)d

†
d"i(1� x,�k?)+

+ (k1 + ik2)b
†
u#i(x, k?)d

†
d#i(1� x,�k?)]|0i

f1,⇡(x,k
2
?) = | "#(x, k

2
?)|2 + k2?| ""(x, k

2
?)|2

(M. Burkardt et al, PLB 2002)
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Fig. 2. Results for the quark PDF of the pion as function of x from the pure-valence LFWF (a) and the effective-valence LFWF (b), with the two sets of parameters in Table 1
corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass. Solid curves: results at the initial scale of the model. Dashed curves: results after NLO evolution 
to Q = 5 GeV. Dashed band: parametrization at Q = 5 GeV from Ref. [67].

Fig. 3. Results for the quark TMD of the pion as function of x and k2
⊥ from the pure-valence LFWF (left) and the effective-valence LFWF (right) with the two sets of parameters 

in Table 1 corresponding with the lowest values of χ2
d.o.f. for non-vanishing quark mass.

correspond to a higher hadronic scale. This is the case when com-
paring the results between the effective-valence and pure-valence 
LFWF with m = 200 MeV and similar values of κ . However, for 
the other quark-mass scenarios we find similar values of Q 0 in the 
two models, which are compensated by much lower values for the 
parameter κ in the case of the effective-valence LFWF. Both the 
values of κ and the initial scale Q 0 differ with respect to [76,77].

3. TMD analysis

3.1. TMD evolution

The unpolarized TMD f1(x, k2
⊥) can be obtained from the fol-

lowing LFWF overlap [46]

f1(x,k2
⊥; Q 0) = 1

16π3 |ψqq/π (x, k⊥) |2, (10)

which reduces to the PDF in Eq. (5) after integration over k⊥ . Us-
ing the expressions in Eqs. (3) and (8), one finds that the TMD in 
both models is a Gaussian distribution in k⊥ , with an x-dependent 
mean square transverse momenta, i.e.

f V
1 (x,k2

⊥; Q 0) = A2

πκ2x(1 − x)
e
− k2

⊥+m2

κ2x(1−x) ,

⟨k2
⊥(x)⟩V = κ2x(1 − x), (11)

f E
1 (x,k2

⊥; Q 0) =
A2 log

(
1
x

)

πκ2(1 − x)2 e
− log

(
1
x

) k2
⊥+m2

κ2(1−x)2 ,

⟨k2
⊥(x)⟩E = κ2(1 − x)2

log(1/x)
, (12)

where k⊥ = |k⊥|. In Fig. 3 we show the results for the TMD in the 
two models, as function of x and k2

⊥ . As in the case of the PDF, 
the pure-valence model is symmetric under the exchange of x →
1 − x, while this symmetry is lost when including effects beyond 
the valence sector in the effective-valence LFWF. The fall-off in k2

⊥
is Gaussian in both models.

The width of the distribution ⟨k2
⊥(x)⟩ is shown as function of 

x in Fig. 4. It is slightly larger in the pure-valence model, with a 
maximum at x = 0.5 and the characteristic symmetric behaviour 
around the maximum. Integrating over x, one obtains ⟨k2

⊥⟩V =
0.023 GeV2. In the case of the effective-valence LFWF the maxi-

J
H
E
P
1
1
(
2
0
1
5
)
1
0
2

Figure 3. The unpolarized TMD f1,π
(

x, k2T
)

, as a function of kT and x, with mπ = 140MeV
(left panel) and mπ = 518MeV (right panel).

The kT integral can be calculated, providing

hπ(x) =

∫

d2kT h⊥1,π
(

x, k2T
)

= −
1

6
√
2
mmπ αs g

2
πqq θ (x) θ (1− x)

×
2

∑

i=0

ci
1

M2
i −m2

π x (1− x)
, (2.14)

which, integrated over x, yields

∫

dx

∫

d2kT h⊥1,π
(

x, k2T
)

= −
1

6
√
2
mαs g

2
πqq

2
∑

i=0

ci
4 arccsc

(

2Mi

mπ

)

√

(

4M2
i −m2

π

)

. (2.15)

In the mπ → 0 limit, we get

lim
mπ→0

∫

dx

∫

d2kT h⊥1,π
(

x, k2T
)

= −
1

6
√
2
mπ mαs g

2
πqq

2
∑

i=0

ci
M2

i

. (2.16)

At variance with the f1,π(x, k2T ) case, in which
∫

dx dk2T f1,π(x, k2T ) = 1 is a consequence of

charge conservation, the quantity (2.16) is not in general related to any physical observable.

However we note that, in the present NJL framework and in the chiral limit, one has

g2πqq
∑2

i=0
ci
M2

i

= 4
3π

2r2π, i.e., the right hand side of eq. (2.16) can be related to rπ, the

charge radius of the pion.

3 Discussion and comparison with lattice data

3.1 Unpolarized TMD

To have a pictorial representation of the global x and kT dependencies, 3D-plots are shown

in figure 3, for mπ = 140MeV (left panel) and mπ = 518MeV (right panel). In the

left panel, it can be seen that the unpolarized TMD varies slowly with x. This is easily

understood looking at eq. (2.5), where x dependent terms always appear multiplied by

m2
π. In the right panel of figure 3 it is clearly seen that, by taking a heavy pion with mπ

– 6 –
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TMD PDFs

Holographic QCD(Alessandro Bacchetta, Sabrina 
Cotogno, Barbara Pasquini, PLB2017)

f1,⇡(x,k
2
?) = | "#(x, k

2
?)|2 + k2?| ""(x, k

2
?)|2

NJL model (Santiago Noguera and Sergio Scopetta, PLB2017)

DSEs+LF QCD

Significant support at low kT. Unfactorizable x and 
kT dependence.

End point behavior ~(1-x)2, following counting 
rule..                                  

Qualitatively, low kT behavior resembles Gaussian 
form.

Quantitatively, in the b-space, the exponential 
behavior exp(-λb) is favored as compared to 
Gaussian form exp(-λ2 b) at large b.

Ignazio Scimemi and Alexey Vladimirov Eur. Phys. J. C (2018) 78:89 

Stanley J. Brodsky and Feng Yuan, PRD 74, 094018 (2006)
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Kaon TMD PDF

fu(x, k2?) = fs(1� x, k2?)
<latexit sha1_base64="l9XbL+qpUh3woHegbcazpm2ZyNE=">AAACM3icbVDLThsxFL0DtIXQR9ou2YyIKgVBw5hN2VRC7aZLkAggZSaRx3OHWLE9lu0pjUbzAfxF/4AVEnxKxQ6x5QPY4SQsePRIlo7OOVfX96RacOui6F8wN7/w6vWbxaXG8tt37z80P346sEVpGHZZIQpzlFKLgivsOu4EHmmDVKYCD9PRz4l/+BuN5YXad2ONiaTHiuecUeelQbOV98v2n43RINZodH9r7Xvet23y9bHkU1EnmiJ8ScgDae2sxut/AWB30LyLs4KVEpVjglrbI5F2SUWN40xg3YhLi5qyET3GnqeKSrRJNT2mDr94JQvzwvinXDhVH09UVFo7lqlPSuqG9rk3Ef/n9UqXbycVV7p0qNhsUV6K0BXhpJkw4waZE2NPKDPc/zVkQ2ooc76/RqzwhBVSUpVVsfVXDTGreySpYiOorjbrqkXquuG7Is+beUkOtjok6pA9X9oPmGERVmAV2kDgG+zAL9iFLjA4hTO4gMvgPLgKroObWXQueJj5DE8Q3N4DQfqrbQ==</latexit><latexit sha1_base64="z0+pQq4QuNLcyfala0FkwcrpYpo="></latexit><latexit sha1_base64="z0+pQq4QuNLcyfala0FkwcrpYpo=">AAACM3icbVDLThsxFPWERyE8mtIlm1GiSkFAOmbTbpAiuukSJBKQMpPI47mTWLE9lu0BotF8QPf9D1aV2k9B7BBbPoAdTsKCR49k6eicc3V9T6w4MzYIbrzKwuLS8oeV1era+sbmx9qnra7Jck2hQzOe6fOYGOBMQscyy+FcaSAi5nAWj39M/bML0IZl8tROFESCDCVLGSXWSYNaI+3nzau98SBUoFX/YOcw7Zsm3n8puVTQCmbw3xP8TBrterj7+6Y9OR7UHsMko7kAaSknxvRwoGxUEG0Z5VBWw9yAInRMhtBzVBIBJipmx5T+F6ckfppp96T1Z+rLiYIIYyYidklB7Mi89abi/7xebtPvUcGkyi1IOl+U5ty3mT9txk+YBmr5xBFCNXN/9emIaEKt668aSrikmRBEJkVo3FUjSMoejopQc6KKr2XRwGVZdV3ht828J92DFg5a+MSVdoTmWEHbqI6aCKNvqI1+omPUQRT9QtfoL/rn/fFuvTvvfh6teM8zn9EreA9Phs6s8w==</latexit><latexit sha1_base64="zvuQ1iHVVUKkI893/aSORPF1jJc="></latexit>

Non-symmetric in x=0.5,  skewed with s quark carrying more longitudinal 
momentum fraction.

The width of transverse momentum increases by about 10%, mu/ms  gets 
masked by DCSB effect.

                                                , flavor dependence in kT.



TMD evolution

µ2 d

dµ2
Ff h(x,~b;µ, ⇣) =

1

2
�f
F (µ, ⇣)Ff h(x,~b;µ, ⇣),

⇣
d

d⇣
Ff h(x,~b;µ, ⇣) = �Df (µ,~b)Ff h(x,~b;µ, ⇣).

<latexit sha1_base64="tOX1bhOzIkjnRctrGPEYszTFhrk="></latexit><latexit sha1_base64="tOX1bhOzIkjnRctrGPEYszTFhrk="></latexit><latexit sha1_base64="tOX1bhOzIkjnRctrGPEYszTFhrk="></latexit><latexit sha1_base64="tOX1bhOzIkjnRctrGPEYszTFhrk="></latexit>

The scale μ is the standard RG scale, with the additional rapidity factorization scale ζ to 
regularize the light-cone divergence arising from Wilson lines. They were usually chosen to 
be the same order of scattering scale.

Renormalization group (RG) equation:

Anomalous Dimension

TMD PDF in the 
coordinate space

Ff h(x,~b;µf , ⇣f ) = exp[

Z

P
(�f

F (µ, ⇣)
dµ

µ
�Df (µ,~b)

d⇣

⇣
)]Ff h(x,~b;µi, ⇣i)

<latexit sha1_base64="8E64W6VVoNZWVkLOCd/cfEint8s="></latexit><latexit sha1_base64="8E64W6VVoNZWVkLOCd/cfEint8s="></latexit><latexit sha1_base64="8E64W6VVoNZWVkLOCd/cfEint8s="></latexit><latexit sha1_base64="8E64W6VVoNZWVkLOCd/cfEint8s="></latexit>

Solution:
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Evolution has a significant effect, leading to 
approximately  an  order  of  magnitude  of 
suppression at small kT , and broader in kT.  

Experiment? 

TMD evolution: quark TMD PDFs

6

�ij(k, P ;S, T ) ⇠ F.T. hPST |  ̄j(0) U[0,⇠]  i(⇠) |PST i|LF

extraction of a quark
not collinear with the proton
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"Experimental study of muon pairs produced by 252-GeV pions on tungsten",   Conway, J.S. et al. 
Phys.Rev. D39 (1989) 92-122.

Transverse momentum dependence parameterized by function P(qT;xF ,mμμ )

Experiment (E615)

Theory

d3�

dx⇡dxNdqT
=

d2�

dx⇡dxN
P (qT ;xF ,mµµ).
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q0 =

p
s

2
(x⇡ + xN )

q3 =

p
3

2
(x⇡ � xN )
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F 1
UU (x1, x2, qT ) =

1

Nc

X

a

e2a

Z
d2k1?d

2k2?�
(2)(qT � k1? � k2?)f

ā
1,⇡(x1, k

2
1?)f

a
1,N (x2, k

2
2?).
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P (qT ;xF ,mµµ) / |qT |F 1
UU (qT ;xF , ⌧)
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TMD formalism:

(leading twist)

offered by DSEs&evolution borrow from global fits

Examine:
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Our results using two evolution schemes generally agree with E615 measurement. In 
particular, when g2 goes to zero as suggested by ζ-prescription at higher order. 

The deviation is less than 10%for  xF =0 and 0.25, and increases to 30% for xF = 0.5.  
Higher Fock state effects, higher twist effect, or both? 

E615:

qT
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Pion GPD
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x: longitudinal momentum fraction carried by quark

bT: transverse separation between the parton and hadron’s center of transverse momentum. 
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its vanishing relying only on the correct normalization of both DA 
and PDF and, accordingly, imposing for the l.h.s. that3

1∫

0

dx D+(x,0) = 0 , (17)

the condition given by (7), resulting here from a soft pion theorem.
If we restrain ourselves to the pion valence-quark GPD and as-

sume that D+ is a continuous function, we can be fully general 
when writing

D+(α,0) = (1 − α2)

∞∑

i=1

ci C (3/2)
2i (α) , (18)

where the factor 1 −α2 reflects that D(±1, 0) = 0, a condition im-
posed by factorisation, as the GPD has to be continuous at x = ±ξ . 
On top of this, the expansion in the orthogonal 3/2-Gegenbauer 
polynomials of even degree (excluding the first one, C (3/2)

0 = 1) 
guarantees both the α-even parity and the fulfilling of the condi-
tion (17),

1∫

0

dα D+(α,0) (19)

= 1
2

∞∑

i=1

ci

1∫

−1

dα (1 − α2) C (3/2)
0 (α) C (3/2)

2i (α) = 0 .

Therefore, D+ and D− can be always chosen so that the soft pion 
theorem expressed by Eqs. (9)–(10) may be fulfilled and, for the 
same price, the ambiguities in the covariant extension from DGLAP 
to ERBL domains be constrained at vanishing squared momentum 
transfer.

Indeed, the issue of the observance of the soft pion theorem 
can be approached in the other way around.

We should emphasise once more that, in terms of LFWFs, the 
ERBL region is understood as an overlap of N and N + 2 partons 
LFWFs, starting in the case of the pion at N = 2. On the other hand, 
the covariant extension based on the Radon transform insures the 
polynomiality property, and any idea of Fock state truncation in 
the ERBL region is lost. One can only say that the information from 
higher Fock states LFWFs required to fulfil polynomiality is prop-
erly captured. But since the PDA is completely described by the 
two-body LFWF, one can wonder whether there is some genuine 
information in the 4-body LFWF interplaying with the 2-body one 
via overlap to produce a GPD fulfilling the soft pion theorem in 
our lowest-Fock-states approach.

Rephrasing the question in a more technical way, in connection 
with the Radon transform representation: does the information 
along the line β = 0 in DD space play a crucial role to guaran-
tee the correct limit in the ERBL maximally skewed kinematic? To 
the extent of our knowledge, there is no conclusive answer to this 
question. Previous results [28] have shown how critical the im-
plementation of the Axial-Vector Ward-Takahashi identity is when 
solving the Dyson-Schwinger and Bethe–Salpeter equations in or-
der to fulfil the soft pion theorem in covariant computations. We 
certainly expect the same thing to be true within the overlap of 
LFWFs framework. If the covariant extension of the DGLAP GPD 

3 The even parity of D+ , manifest from Eq. (15 )’s r.h.s. because ϕ(x) is symmetric 
under the exchange x → 1 − x, implies ∫ 1

0 dαD+ = 0 as the immediate consequence 
of its vanishing after integration over its support [−1, 1].

obtained from the appropriate 2-body LFWFs is not sufficient to 
fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26 ,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2]and the Bethe–
Salpeter amplitude is given by:

&π (q, P ) = iNγ5

∞∫

0

dω

1∫

−1

dz
ρ(ω, z)M2

(
q − 1−z

2 P
)2 + M2 + ω

, (20)

where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)&π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:

+l=0 (x,k⊥) = 8
√

15 π
M3

(
k2

⊥ + M2
)2 (1 − x) x , (21)

and the helicity-1:

i k⊥ j +l=1 (x,k⊥) = 8
√

15 π
k⊥ j M2

(
k2

⊥ + M2
)2 (1 − x) x (22)

with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2

⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
following expression,

Hu
π+ (x, ξ, t)

∣∣
ξ≤x = (23)

∫
d2k⊥
16 π3

[
+∗

l=0

(
x − ξ

1 − ξ
, k̂⊥

)
+l=0

(
x + ξ
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, k̃⊥

)
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l=1
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x − ξ

1 − ξ
, k̂⊥

)
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(
x + ξ

1 + ξ
, k̃⊥

)]
,

with k̂⊥ = k⊥ + 1−x
1−ξ

,⊥
2 and k̃⊥ = k⊥ − 1−x

1+ξ
,⊥

2 , which extends 
Eq. (2) for the GPD of our special π+ case. One is thus left with:
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and PDF and, accordingly, imposing for the l.h.s. that3
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fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26 ,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2]and the Bethe–
Salpeter amplitude is given by:

&π (q, P ) = iNγ5

∞∫

0

dω

1∫

−1

dz
ρ(ω, z)M2

(
q − 1−z

2 P
)2 + M2 + ω

, (20)

where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)&π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:

+l=0 (x,k⊥) = 8
√

15 π
M3

(
k2

⊥ + M2
)2 (1 − x) x , (21)

and the helicity-1:

i k⊥ j +l=1 (x,k⊥) = 8
√

15 π
k⊥ j M2

(
k2

⊥ + M2
)2 (1 − x) x (22)

with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2

⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
following expression,

Hu
π+ (x, ξ, t)

∣∣
ξ≤x = (23)

∫
d2k⊥
16 π3

[
+∗

l=0

(
x − ξ

1 − ξ
, k̂⊥

)
+l=0

(
x + ξ

1 + ξ
, k̃⊥

)

+ k̂⊥ · k̃⊥ +∗
l=1

(
x − ξ

1 − ξ
, k̂⊥

)
+l=1

(
x + ξ

1 + ξ
, k̃⊥

)]
,

with k̂⊥ = k⊥ + 1−x
1−ξ

,⊥
2 and k̃⊥ = k⊥ − 1−x

1+ξ
,⊥

2 , which extends 
Eq. (2) for the GPD of our special π+ case. One is thus left with:

Quark GPD of pion at leading twist

In the  DGLAP region (1>=|x|>=|ξ|):

There are two regions, ERBL and DGLAP region, named after their evolution in limiting cases

Impact Parameter dependent GPD:
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LFWFs :                                     (pseudo-scalar) 0(x, k2?) &  1(x, k2?)

Pion Kaon

fm2, hb2
T
i⌘c
c = 0.036 fm2 and hb2

T
i⌘b

b
= 0.01 fm2 respec-

tively. Finally, one can also define the valence quark distribution
⇢(0)v (b2

T
) = ⇢(0)q (b2

T
) � ⇢(0)

q̄
(b2

T
). Here we assume q is the active

quark. Since ⇢(0)
q̄
(b2

T
) vanishes at model scale, ⇢(0)v (b2

T
) is equiv-

alent to ⇢(0)q (b2
T
) and the plot is same as that in Fig. 3. However,

it’s worth mentioning that ⇢(0)v (b2
T
) is generally independent of

the factorization scale, because DGLAP evolution conserves
the quark number density at every slice of bT . Equivalently,
H(x, 0, t) evolves independent of t [4]. So the lower panel of
Fig. 3 can also be viewed as the valence (anti-)quark spatial
distribution at any scale.
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Figure 3: Upper panel: ⇢(x, b2
T ) for light quarks in pion and kaon at model

scale (⇡ 500 MeV). The line styles are indicated in the plot. Lower panel: The
⇢(0)(b2

T ) of quarks in pseudo-scalar mesons. The ⇢(0)(b2
T ) is defined in Eq. (18).

4. Form factors and a modification to the light front overlap
representation

The hadron’s elastic form factors provide important informa-
tion of hadron structure. Over the past several decades, there has
been lots of e�ort in measuring the pion’s EMFF [48, 49, 50, 51].
The EMFF is generally defined as

h⇡(p0)|
’
q=u,d

eq J
µ
q (0)|⇡(p)i = (p0µ + p

µ)F(Q2). (19)

with J
µ
q (x) =  ̄q(x)�µ q(x) and p

0 � p = Q. Comparing with
Eq. (13), one sees it is the zeroth moment of GPD

F(t) =
π 1

�1
dx(euH

u(x, ⇠, t) + edH
d(x, ⇠, t)), (20)

regardless of the skewedness ⇠. However, using Eqs.(14), we
find the curve generally overshoots the data, as shown by the
dashed blue curve in Fig. 4.
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Figure 4: EMFF F(t) of pion in the space-like region. The data is the from
NA7 Collaboration [49] (red empty circle) and Jlab [51] (green filled square).
The dashed blue curve is based on the unmodified GPD in Eq. (14), while the
solid black curve uses an improved GPD in Eq. (25).

Essentially speaking, this deviation originates in our truncation
of the Fock state to the leading component, which is just an
approximation. Especially, the deviation at large Q

2 can be
expected, since therein pQCD predicts [52]

9Q0 >⇤QCD | Q
2
F⇡(Q2)

Q
2>Q2

0⇡ 16⇡CF↵s(Q2)w2
⇡ . (21)

Here Q
2 = �t and w⇡ is the inverse momentum of parton

distribution amplitude (PDA) w⇡ =
Ø 1
0 dxx

�1�⇡(x,Q2), with
the PDA �⇡(x,Q2) normalized at the scale of Q

2

�⇡(x,Q2) =
π
k2
T Q2

d
2kT

16⇡3  0(x, k2
T
). (22)

π 1

0
dx�⇡(x,Q2) = f⇡

2
p

3
. (23)

The electroweak decay constant is f⇡ = 92.4 MeV. The DSE
calculation based on Eqs. (21-23) has been presented in [38] and
is reasonable. However, the LFWF normalized by Eq. (23) is
significantly smaller than that from our normalization condition
Eq. (11). Naturally, the deviation at large Q

2 extends to the
intermediate Q

2 region in Fig. 4 as well.
However, the deviation at low Q

2 region is very disturbing.
Since we’ve normalized the EMFF at the origin of t by F(0) = 1,
we expect better agreement with data in its vicinity. For instance,
the charge radius

r
2
c
= �6

@F⇡(Q2)
@Q2

����
Q2

(24)

5

Density distribution
Z 1

0
dxbT ⇢(x, bT )
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GPD in ERBL region (-ξ<=x<=ξ)

F (t) =

Z 1

�1
dxH(x, ⇠, t)
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NJL calculation (Adam Freese et al) shows the dressing of the vertex insertion is crucial for 
ERBL region.

Table 1: Representation parameters. Upper panel: Eq. (33) – the pair (x, y) rep-
resents the complex number x+iy. Lower panel: Eqs. (34,35,36). (Dimensioned
quantities in GeV).

z1 m1 z2 m2
u (0.44, 0.28) (0.46, 0.18) (0.12, 0.00) (�1.31,�0.75)
s (0.43, 0.30) (0.55, 0.22) (0.12, 0.11) (�0.83, 0.42)
c (0.46, 0.56) (1.67, 0.43)
b (0.46, 1.46) (5.40, 0.60)

U1 U2 U3 n1 n2 n3 �i

1 �i

2 ⇤
E⇡ 2.76 �1.84 0.04 4 5 1 0.0 2.2 1.41
F⇡ 1.46 �0.97 0.006 4 5 1 0.0 -0.5 1.13
EK 2.98 �2.0 0.025 4 5 1 -0.4 1.0 1.35
FK 0.86 �0.30 0.004 4 6 1 -0.4 -1.0 1.20
E⌘c 0.98 0.015 5 1 -1.5 2.15
F⌘c 0.15 0.002 5 1 -2.3 1.94
E⌘b 0.97 0.027 4 1 -2.2 3.03
F⌘b 0.05 0.001 5 1 -2.5 3.18

We employ the dominant terms E(k; P) and F(k; P), which are
parameterized by (⌘ = 1/2):

F (k; P) =
π 1

�1
d↵⇢i(↵)


U1⇤

2n1

(k2 + ↵k · P + ⇤2)n1

+
U2⇤

2n2

(k2 + ↵k · P + ⇤2)n2

�

+

π 1

�1
d↵⇢u(↵)

U3⇤
2n3

(k2 + ↵k · P + ⇤2)n3
, (35)

⇢i(↵) =
1p
⇡

�(3/2)
�(1) [C(1/2)

0 (↵) + �i

1C
(1/2)
1 (↵)

+ �i

2C
(1/2)
2 (↵)], (36)

where ⇢u(↵) = 3
4 (1 � ↵2) and {C

(1/2)
n , n = 0, 1, ...,1} are the

Gegenbauer polynomials of order 1/2. The value of the parame-
ters are listed in Table. 1.

6.2. The modified GPD at zero skewedness in NJL model.

The modified GPD given in Eq. (25) is important in validating
our valence picture of pion concerning the pion’s charge radius.
Here we give a quick sketch on how it is obtained in the NJL
model, hence list only the basic idea and important steps/results.
Within impulse approximation, pion’s GPD in the NJL model
can be calculated as

H
0
I=0,1(x, ⇠, t) =

π
d

4
l

(2⇡)4 Tr[�̄⇡ S � · n S �⇡ S], (37)

with momentum assigned in Fig. 6. Here we consider the GPD
of isospin 0 or 1, defined as H

0
I=0 = H

0
u
+H

0
d

and H
0
I=1 = H

0
u
�H

0
d
.

The flavor matrices are implicitly embedded in the elements S,
�⇡ and � · n. The � · n represents the dash line boxed area. We
denote the � · n as a violet blob. It satisfies the inhomogeneous
Bethe-Salpeter equation

k
�

�
/2
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Figure 6: Triangle diagram (impuluse approximation) for H(x, ⇠, t). The dash
line boxed area represents the fully dressed vertex � · n. Lines with arrows
indicate dressed quark propagators S and the black blob represents the pion’s
BS amplitude �⇡ .
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Here the red blob is the bare vertex
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Note the first Dirac delta ensures k ± �/2 = l ± �/2 at leading
truncation. The ⌧0 or ⌧3 is for isospin 0 or 1, respectively.

To solve � · n, one can alternatively sum the series
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as long as it converges to a finite result. Its sub-leading term

BI=0,1(x, ⇠, t) = (39)

can be evaluated with its Mellin moments, i.e.,
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where ⌦ denotes any of the five Dirac/isospin structures appear-
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In the absence of gluons, the NJL model finds a "hidden" ERBL region contribution at 
even zero skewness, proportional to       , which modifies our EMFF significantly.

fm2, hb2
T
i⌘c
c = 0.036 fm2 and hb2

T
i⌘b

b
= 0.01 fm2 respec-

tively. Finally, one can also define the valence quark distribution
⇢(0)v (b2

T
) = ⇢(0)q (b2

T
) � ⇢(0)

q̄
(b2

T
). Here we assume q is the active

quark. Since ⇢(0)
q̄
(b2

T
) vanishes at model scale, ⇢(0)v (b2

T
) is equiv-

alent to ⇢(0)q (b2
T
) and the plot is same as that in Fig. 3. However,

it’s worth mentioning that ⇢(0)v (b2
T
) is generally independent of

the factorization scale, because DGLAP evolution conserves
the quark number density at every slice of bT . Equivalently,
H(x, 0, t) evolves independent of t [4]. So the lower panel of
Fig. 3 can also be viewed as the valence (anti-)quark spatial
distribution at any scale.

Figure 3: Upper panel: ⇢(x, b2
T ) for light quarks in pion and kaon at model

scale (⇡ 500 MeV). The line styles are indicated in the plot. Lower panel: The
⇢(0)(b2

T ) of quarks in pseudo-scalar mesons. The ⇢(0)(b2
T ) is defined in Eq. (18).

4. Form factors and a modification to the light front overlap
representation

The hadron’s elastic form factors provide important informa-
tion of hadron structure. Over the past several decades, there has
been lots of e�ort in measuring the pion’s EMFF [48, 49, 50, 51].
The EMFF is generally defined as

h⇡(p0)|
’
q=u,d

eq J
µ
q (0)|⇡(p)i = (p0µ + p

µ)F(Q2). (19)

with J
µ
q (x) =  ̄q(x)�µ q(x) and p

0 � p = Q. Comparing with
Eq. (13), one sees it is the zeroth moment of GPD

F(t) =
π 1

�1
dx(euH

u(x, ⇠, t) + edH
d(x, ⇠, t)), (20)

regardless of the skewedness ⇠. However, using Eqs.(14), we
find the curve generally overshoots the data, as shown by the
dashed blue curve in Fig. 4.
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○
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○
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■
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○ Amendolia et al.
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t)

Figure 4: EMFF F(t) of pion in the space-like region. The data is the from
NA7 Collaboration [49] (red empty circle) and Jlab [51] (green filled square).
The dashed blue curve is based on the unmodified GPD in Eq. (14), while the
solid black curve uses an improved GPD in Eq. (25).

Essentially speaking, this deviation originates in our truncation
of the Fock state to the leading component, which is just an
approximation. Especially, the deviation at large Q

2 can be
expected, since therein pQCD predicts [52]

9Q0 >⇤QCD | Q
2
F⇡(Q2)

Q
2>Q2

0⇡ 16⇡CF↵s(Q2)w2
⇡ . (21)

Here Q
2 = �t and w⇡ is the inverse momentum of parton

distribution amplitude (PDA) w⇡ =
Ø 1
0 dxx

�1�⇡(x,Q2), with
the PDA �⇡(x,Q2) normalized at the scale of Q

2

�⇡(x,Q2) =
π
k2
T Q2

d
2kT

16⇡3  0(x, k2
T
). (22)

π 1

0
dx�⇡(x,Q2) = f⇡

2
p

3
. (23)

The electroweak decay constant is f⇡ = 92.4 MeV. The DSE
calculation based on Eqs. (21-23) has been presented in [38] and
is reasonable. However, the LFWF normalized by Eq. (23) is
significantly smaller than that from our normalization condition
Eq. (11). Naturally, the deviation at large Q

2 extends to the
intermediate Q

2 region in Fig. 4 as well.
However, the deviation at low Q

2 region is very disturbing.
Since we’ve normalized the EMFF at the origin of t by F(0) = 1,
we expect better agreement with data in its vicinity. For instance,
the charge radius

r
2
c
= �6

@F⇡(Q2)
@Q2

����
Q2

(24)

5

The LF approach is convenient in sketching 
DGLAP region GPD (including the TMD). 

Conclusion

To reveal GPD in the ERBL region, the 
covariant approach is needed. (Higher Fock 
states implicitly involved)

!24

�(x)
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Electro-Magnetic form factor



Covariant approach and higher Fock states
Covariant approach: Rainbow-Ladder DSE calculation of pion PDF 

Table 1: Representation parameters. Upper panel: Eq. (33) – the pair (x, y) rep-
resents the complex number x+iy. Lower panel: Eqs. (34,35,36). (Dimensioned
quantities in GeV).

z1 m1 z2 m2
u (0.44, 0.28) (0.46, 0.18) (0.12, 0.00) (�1.31,�0.75)
s (0.43, 0.30) (0.55, 0.22) (0.12, 0.11) (�0.83, 0.42)
c (0.46, 0.56) (1.67, 0.43)
b (0.46, 1.46) (5.40, 0.60)

U1 U2 U3 n1 n2 n3 �i

1 �i

2 ⇤
E⇡ 2.76 �1.84 0.04 4 5 1 0.0 2.2 1.41
F⇡ 1.46 �0.97 0.006 4 5 1 0.0 -0.5 1.13
EK 2.98 �2.0 0.025 4 5 1 -0.4 1.0 1.35
FK 0.86 �0.30 0.004 4 6 1 -0.4 -1.0 1.20
E⌘c 0.98 0.015 5 1 -1.5 2.15
F⌘c 0.15 0.002 5 1 -2.3 1.94
E⌘b 0.97 0.027 4 1 -2.2 3.03
F⌘b 0.05 0.001 5 1 -2.5 3.18

We employ the dominant terms E(k; P) and F(k; P), which are
parameterized by (⌘ = 1/2):

F (k; P) =
π 1

�1
d↵⇢i(↵)


U1⇤

2n1

(k2 + ↵k · P + ⇤2)n1

+
U2⇤

2n2

(k2 + ↵k · P + ⇤2)n2

�

+

π 1

�1
d↵⇢u(↵)

U3⇤
2n3

(k2 + ↵k · P + ⇤2)n3
, (35)

⇢i(↵) =
1p
⇡

�(3/2)
�(1) [C(1/2)

0 (↵) + �i

1C
(1/2)
1 (↵)

+ �i

2C
(1/2)
2 (↵)], (36)

where ⇢u(↵) = 3
4 (1 � ↵2) and {C

(1/2)
n , n = 0, 1, ...,1} are the

Gegenbauer polynomials of order 1/2. The value of the parame-
ters are listed in Table. 1.

6.2. The modified GPD at zero skewedness in NJL model.

The modified GPD given in Eq. (25) is important in validating
our valence picture of pion concerning the pion’s charge radius.
Here we give a quick sketch on how it is obtained in the NJL
model, hence list only the basic idea and important steps/results.
Within impulse approximation, pion’s GPD in the NJL model
can be calculated as

H
0
I=0,1(x, ⇠, t) =

π
d

4
l

(2⇡)4 Tr[�̄⇡ S � · n S �⇡ S], (37)

with momentum assigned in Fig. 6. Here we consider the GPD
of isospin 0 or 1, defined as H

0
I=0 = H

0
u
+H

0
d

and H
0
I=1 = H

0
u
�H

0
d
.

The flavor matrices are implicitly embedded in the elements S,
�⇡ and � · n. The � · n represents the dash line boxed area. We
denote the � · n as a violet blob. It satisfies the inhomogeneous
Bethe-Salpeter equation

k
�

�
/2
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Figure 6: Triangle diagram (impuluse approximation) for H(x, ⇠, t). The dash
line boxed area represents the fully dressed vertex � · n. Lines with arrows
indicate dressed quark propagators S and the black blob represents the pion’s
BS amplitude �⇡ .
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Here the red blob is the bare vertex
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Note the first Dirac delta ensures k ± �/2 = l ± �/2 at leading
truncation. The ⌧0 or ⌧3 is for isospin 0 or 1, respectively.

To solve � · n, one can alternatively sum the series

+ ++ . . .=

as long as it converges to a finite result. Its sub-leading term

BI=0,1(x, ⇠, t) = (39)

can be evaluated with its Mellin moments, i.e.,
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where ⌦ denotes any of the five Dirac/isospin structures appear-
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distribution should treat the gluon distribution self-consistently,
which should imply that the gluon PDF is more suppressed at
large x than the quark PDF, because the large-x quarks are the
source of the large-x gluons [17, 18].

The leading-twist pion and kaon quark distribution functions,
which for a quark of flavor q are defined by [32–35]:1

q(x) =
π

d�
4⇡

e�i xP ·n� hP | q(�n) /n W(�, n · A) q(0)|Pic, (1)

where n is a light-like 4-vector (n2 = 0) [34–36], are evaluated
here using QCD’s DSEs in the rainbow-ladder truncation
defined in Ref. [37]. The DSEs have proven to be a powerful tool
with which to study hadron structure [23, 24], with particular
success in predicting the properties of the Goldstone bosons [9,
10, 38, 39] since the DSE framework encapsulates many aspects
of DCSB and quark-gluon confinement in QCD [23, 40].

Within a rainbow-ladder truncation to QCD’s DSEs the quark
distribution functions in a meson M can be represented by the
diagram in Fig. 1, and expressed as

qM (x) = 1
2 P · n

Tr
π

d4p
(2⇡)4 �M (p, P) S(p) �q(x, p, n)

⇥ S(p) �M (p, P) S(p � P), (2)

where the trace is over Dirac, color, and flavor indices. The
dressed quark propagator S(p) is obtained by solving the gap
equation [23, 24, 37] and the bound-state amplitude �M (p, P)
is the solution to the homogeneous BSE [37, 38, 41], which in
the rainbow-ladder truncation sums an infinite number of ladder
gluon exchanges between the quark and antiquark. In Fig. 1
these gluons have been absorbed into �M (p, P) and �M (p, P).
The vertex �q(x, p, n) represents the infinite sum of exchanged
dressed-gluons in Fig. 1 and satisfies the inhomogeneous BSE

�q(x, p, n) = iZ2 /n �
⇣
x � p · n

P · n

⌘

�
π

d4`

(2⇡)4 �µ Kµ⌫(p � `) S(`) �q(x, `, n) S(`) �⌫, (3)

where Z2 is the quark wave function renormalization.
The rainbow-ladder BSE kernel has the form Kµ⌫(q) =
Z2

2 G(q2) D0
µ⌫(q), with D0

µ⌫(q) the bare gluon propagator in
Landau gauge, and G(q2) the e�ective running coupling whose
infrared behavior is governed by a single parameter [37] and in
the ultraviolet is one-loop renormalized QCD.

Physical insight into Eq. (2) can be obtained by introducing
=
∞

dydz �
�
y � p ·n

P ·n
�
�
�
z � k ·n

p ·n
�
, and in that context obtain

�q(x, p, n) =
∫

dy dz �(x � yz) �
⇣
y � p · n

P · n

⌘
⇤q(z, p, n), (4)

1 The Wilson line in Eq. (1) enforces color gauge invariance and in light-cone
gauge (n · A = 0) becomes unity [34]. The DSE approach used here is
formulated in Landau gauge, so the gauge link can in principle make a
non-trivial contribution to the PDF. However, we leave the challenge of a
DSE treatment for the Wilson line to future work.

Figure 1. Diagram that gives the quark distribution in a pion or kaon,
where all quark and gluon propagators are dressed. The elementary
operator insertion is given by ⌦ = i Z2 /n �(x � k · n/P · n).

where z = k · n/p · n = xP · n/p · n = x/y is the light-cone
momentum fraction of the “active” quark relative to the host
dressed quark, and y is the host dressed quark light-cone mo-
mentum fraction relative to the meson. The hadron-independent
vertex ⇤q(z, p, n) is represented by the inhomogeneous BSE:

⇤q(z, p, n) = iZ2 /n �(1 � z) �
∫

du dw �(z � uw)
π

d4`

(2⇡)4

⇥ �
✓
w � ` · n

p · n

◆
�µ Kµ⌫(p � `) S(`)⇤q(u, `, n) S(`) �⌫, (5)

which has a solution of the form

⇤q(z, p, n) = i/n �(1 � z)
+ i/n f q1 (z, p2) + n · p

⇥
i/p f q2 (z, p2) + f q3 (z, p2)

⇤
. (6)

The functions f qi (z, p2) can be interpreted as quark distributions
for an active quark inside a dressed quark with virtuality p2.

The key advance in this work is a rigorous treatment of
the dressed quark operator ⇤q(z, p, n) in a rainbow-ladder
truncation to QCD’s DSEs, which allows for a self-consistent
distinction between the momentum carried by quarks and glu-
ons. Two approximations to Eq. (5) are common: the simplest
is to ignore the gluon dressing which is natural in Nambu–Jona-
Lasinio type models [42–44], another, adopted in previous
DSE-based approaches, is the Ward-identity ansatz (WIA):

⇤q(z, p, n) ! ⇤WIA
q (z, p, n) = � (1 � z) nµ

@

@pµ
S�1
q (p). (7)

This ansatz approximates the true light-cone momentum
fraction z = k · n/p · n by z = 1, which in rainbow-ladder
truncation is exact for the zeroth moment, but breaks down
for any higher moment and therefore does not distribute
momentum in a physical way between quarks and gluons. To
date all DSE studies have employed the WIA.

The DSEs are formulated in Euclidean space and therefore a
direct evaluation of Eq. (2) to obtain the pion and kaon PDFs is
challenging because of non-analytic structures in the complex
plane. This can be alleviated by first calculating a finite number
of moments – defined by hxniqM =

Ø 1
0 dx xn qM (x) – and then
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PDF N ↵i ci
u⇡ 9.567 [1.702, 7.857, 34.19] [3.688, 21.17, 2.699]
uK 12.16 [4.344, �4.516, 12.23] [0.258, 4.249, �2.883]
s̄K 25.37 [5.497, �4.425, 14.46] [0.324, 4.768, 1.099]

Table II. Fit parameters for Eq. (8) that give the valence quark distri-
butions at the model scale of µ0 = 0.78 GeV.

bulk of the gluon momentum in the bound state.
To re-construct the PDFs from the moments we fit them to

q(x) = N x↵1 (1 � x)2 (1 + c1x↵2 + c2x↵3 ) + c3(1 � x)4, (8)

with the resulting fit parameters provided in Tab. II for the pion
and kaon valence PDFs. The DSE framework has been shown
to give an exponent q(x) ' (1 � x)2 as x ! 1 for each quark
distribution [25–27]; we therefore impose this constraint in
Eq. (8). DSE results for the pion and kaon quark distributions
are presented in Fig. 3 at a scale of Q = 5.2 GeV. Our DSE result
for the pion is in excellent agreement with the pion-induced
Drell-Yan measurements of Conway et al. [19] over the entire
x domain of the data, as well as the recent JAM analysis [31].
The only kaon data is for the ratio uK (x)/u⇡(x) [46], and again
we find excellent agreement.2

Fig. 3 contrasts our DSE result for u⇡
v (x) with the rainbow-

ladder DSE calculation from Ref. [26] that used the WIA. The
self-consistent treatment of the gluon contributions to the PDFs
has a dramatic impact on the quark distributions over the entire
valence region, except near x = 1. The di�erences between our
DSE result and earlier results using the WIA can be understood
as follows: the non-perturbative gluons that dress the quark
operator that defines the PDFs dominate at low-to-intermediate
x, and in this domain carry significant momentum, thereby
reducing support for the quark distributions in this region. How-
ever, the valence quark PDFs must satisfy the baryon number
sum rule, which necessitates increased support at large x where
the gluons play less of a role. This shift in support for the quark
PDFs from the gluon dressing is inherently non-perturbative,
because here the quark-gluon splitting functions are dressed,
and therefore cannot be mimicked by the perturbative gluons
introduced by the QCD evolution equations.

In our DSE calculation the large-x quarks are the source of the
large-x gluons, which implies g(x)/q(x) ! 0 as x ! 1 at the
initial DSE scale, in agreement expectations from perturbative
QCD [17, 18]. This is in contrast to the ASV analysis [22]
where g⇡(x)/u⇡(x) ! 1 as x ! 1 at the initial scale of the
PDFs. This observation may be the source of the di�erences
between the ASV analysis illustrated in Fig. 3 and our DSE
result. This illustrates the importance of a self-consistent
treatment of both the quark and gluon contributions in any PDF
analysis or calculation.

The pion and kaon PDF results presented here include for
the first time a correct treatment of the non-perturbative gluon

2 To perform the singlet DGLAP evolution needed in this case we take a gluon
distribution of the form g(x) = Ng x�1(1 � x)3 [47, 48] and use our results
for the gluon momentum fraction to constraint Ng .

Figure 3. Top panel: Solid line is our DSE result for the pion’s valence
quark distribution; green band is the JAM analysis [31]; dashed curve
is the DSE result from Ref. [26] which uses the WIA; and the dotted
curve is the NLO soft-gluon-resummation analysis from ASV [22].
All curves are at the scale Q = 5.2 GeV and, with the exception of
JAM, have a x ! 1 exponent consistent with theory expectations.
Bottom panel: Contrast between our DSE results for the pion and kaon
PDFs, and uK (x)/u⇡ (x) which is compared to data from Ref. [46].

dressing of the quark operator that defines the spin-independent
quark distributions within a rainbow-ladder truncation to QCD’s
DSEs. With this framework it is straightforward to correctly
distinguish between quark and gluon contributions to PDFs,
which is shown to have a dramatic impact on quark PDFs over
the entire valence region. An immediate consequence of this
non-perturbative gluon dressing is that gluons carry 35% of
the pion’s and 30% of the kaon’s light-cone momentum at the
initial scale of the DSE calculations. Our results for the pion
and kaon PDFs are in excellent agreement with available data,
and agree with the perturbative QCD expectation as x ! 1.
These results demonstrate that a self-consistent analysis of both
the quark and gluon PDFs is essential, and that more data on
both distributions in the pion and kaon is needed, e.g., from
the proposed electron-ion collider.

KB thanks Chao Shi for several beneficial conversations.
This work was supported by the U.S. Department of Energy,
O�ce of Science, O�ce of Nuclear Physics, contract no. DE-
AC02-06CH11357; by the National Science Foundation, grant

Within the DSEs, For pion, gluon carries around 
30% momentum at hadron scale.

This allows better precision by going to a larger (safer) initial evolution 
scale, e.g., 500 MeV ---> 800 MeV.
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For DSEs with gluon d.o.f, higher Fock components with 
gluons are involved in the covariant  approach.
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Conclusions and Outlook

-

DSEs, starting with the quark and gluon degrees of freedom, 
provide a fully covariant solution to a variety of hadron 
problems with very few parameters.


The Bethe-Salpeter wave functions can be projected on to the 
light front, which provides a unique chance to calculate the 
light front wave functions.


The pion unpolarized TMD PDF calculated from DSE+LF is in 
good agreement with experiment data within the TMD 
formalism.


The GPD in the DGLAP region can be studied using LF 
approach, but ERBL region is lacking. Covariant approach is 
necessary.


TMD and GPD calculation could be refined with the covariant 
approach within DSEs, by incorporating many higher Fock 
states and pushing to a larger and safer initial evolution scale. 


Nucleon is readily to be studied.


Table 1: Representation parameters. Upper panel: Eq. (33) – the pair (x, y) rep-
resents the complex number x+iy. Lower panel: Eqs. (34,35,36). (Dimensioned
quantities in GeV).

z1 m1 z2 m2
u (0.44, 0.28) (0.46, 0.18) (0.12, 0.00) (�1.31,�0.75)
s (0.43, 0.30) (0.55, 0.22) (0.12, 0.11) (�0.83, 0.42)
c (0.46, 0.56) (1.67, 0.43)
b (0.46, 1.46) (5.40, 0.60)

U1 U2 U3 n1 n2 n3 �i

1 �i

2 ⇤
E⇡ 2.76 �1.84 0.04 4 5 1 0.0 2.2 1.41
F⇡ 1.46 �0.97 0.006 4 5 1 0.0 -0.5 1.13
EK 2.98 �2.0 0.025 4 5 1 -0.4 1.0 1.35
FK 0.86 �0.30 0.004 4 6 1 -0.4 -1.0 1.20
E⌘c 0.98 0.015 5 1 -1.5 2.15
F⌘c 0.15 0.002 5 1 -2.3 1.94
E⌘b 0.97 0.027 4 1 -2.2 3.03
F⌘b 0.05 0.001 5 1 -2.5 3.18

We employ the dominant terms E(k; P) and F(k; P), which are
parameterized by (⌘ = 1/2):

F (k; P) =
π 1

�1
d↵⇢i(↵)


U1⇤

2n1

(k2 + ↵k · P + ⇤2)n1

+
U2⇤

2n2

(k2 + ↵k · P + ⇤2)n2

�

+

π 1

�1
d↵⇢u(↵)

U3⇤
2n3

(k2 + ↵k · P + ⇤2)n3
, (35)

⇢i(↵) =
1p
⇡

�(3/2)
�(1) [C(1/2)

0 (↵) + �i

1C
(1/2)
1 (↵)

+ �i

2C
(1/2)
2 (↵)], (36)

where ⇢u(↵) = 3
4 (1 � ↵2) and {C

(1/2)
n , n = 0, 1, ...,1} are the

Gegenbauer polynomials of order 1/2. The value of the parame-
ters are listed in Table. 1.

6.2. The modified GPD at zero skewedness in NJL model.

The modified GPD given in Eq. (25) is important in validating
our valence picture of pion concerning the pion’s charge radius.
Here we give a quick sketch on how it is obtained in the NJL
model, hence list only the basic idea and important steps/results.
Within impulse approximation, pion’s GPD in the NJL model
can be calculated as

H
0
I=0,1(x, ⇠, t) =

π
d

4
l

(2⇡)4 Tr[�̄⇡ S � · n S �⇡ S], (37)

with momentum assigned in Fig. 6. Here we consider the GPD
of isospin 0 or 1, defined as H

0
I=0 = H

0
u
+H

0
d

and H
0
I=1 = H

0
u
�H

0
d
.

The flavor matrices are implicitly embedded in the elements S,
�⇡ and � · n. The � · n represents the dash line boxed area. We
denote the � · n as a violet blob. It satisfies the inhomogeneous
Bethe-Salpeter equation
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Figure 6: Triangle diagram (impuluse approximation) for H(x, ⇠, t). The dash
line boxed area represents the fully dressed vertex � · n. Lines with arrows
indicate dressed quark propagators S and the black blob represents the pion’s
BS amplitude �⇡ .
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Here the red blob is the bare vertex
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(38)

Note the first Dirac delta ensures k ± �/2 = l ± �/2 at leading
truncation. The ⌧0 or ⌧3 is for isospin 0 or 1, respectively.

To solve � · n, one can alternatively sum the series

+ ++ . . .=

as long as it converges to a finite result. Its sub-leading term

BI=0,1(x, ⇠, t) = (39)

can be evaluated with its Mellin moments, i.e.,

π
dx x

s
BI (x, ⇠, t) =

’
⌦

2iG⌦

π
dx x
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n · [xP � k]
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(40)

where ⌦ denotes any of the five Dirac/isospin structures appear-
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