Dihadron multiplicity studies with clas12

Harut Avakian (JLab)

CLAS Collaboration Meeting June 20, 2019

- Studies of SIDIS at JLab
- •
- Hadronization of quarks Dihadron production at CLAS12 ٠
- Separating resonance(VM) from uncorrelated 2 hadrons ٠
- I UND MC vs Data •
- Distributions of direct (string produced) pions vs VM decay pions ٠
- Conclusions

SIDIS kinematical plane and observables

Jefferson Lab

H. Avakian, CLAS Col. M., June 20

🍘 📢 2

Hadronization

Hadronization Function \rightarrow conditional probability to produce hadron **h**

$$H_{h/N}^{q'}\left(x,\mathbf{k}_{T},Q^{2};x_{F},\mathbf{P}_{T}^{h};\mathbf{s}_{q}^{\prime},\mathbf{S}_{N}\right)$$

Quark Fragmentation Functions (*universal and independent*)

 $D_{q,s'}^h(z,\mathbf{p}_T,Q^2)$

Where this works?

Correlated hadron production in hard scattering

Dedicated CLAS12 proposals: E12-06-112B/E12-09-008B

With ϕ_S , ϕ_1 , ϕ_2 , ϕ_R , ϕ_h several observables have been identified to study correlations

 $\phi_R - \phi_S$, ϕ_R -accessing transversity and quark-gluon correlations Radici & Bacchetta $\phi_R - \phi_h$ -accessing leading twist polarized fragmentation functions Matevosyan, Kotzinian, Thomas $\phi_1 - \phi_2$ -accessing correlations in current and target regions Anselmino, Barone, Kotzinian

2h production in SIDIS provides access to correlations inaccessible in simple SIDIS

Exclusive π/ρ production at large t

Implications

- x-section of measured exclusive process at large t exhibit similar pattern
- $\rho + > \rho^0 \rightarrow D$ iffractive production suppressed
- at large t production mechanism most likely is similar to SIDIS (color transparency?)
- Slightly higher rho x-sections indicate the fraction of SIDIS pions from VM > 60%
- consistent with LUND-MC in fraction of pions from rho

Correlated pairs: Data/MC(Run 5038,T-1,10.6GeV)

- Fraction of exclusive pairs could be separated
- Most of the pion pairs comes from SIDIS VM decays
 - those are mostly SIDIS VM

Correlated pairs: CLAS12 Data

- Normalized to number of electrons pion pair multiplicities uncorrected for acceptance are consistent with LUND-MC (no Fermi motion accounted)
- Fraction of exclusive states may be significant
- Background under $\rho 0$ in M_{\pi\pi} mainly from other VMs $\rho\text{+}$ and $\omega~$ + some uncorrelated pions

Invariant mass of pion pairs $M\pi\pi$

Multiplicities from data consistent with multiplicities coming from CLAS12 LUND MC

Lumi-dependence of couns from RGB

Runs 6226(5nA) 6227(15nA) 6240 (35nA), 6310,6328 (50nA)

RGB lumi-dependence: ratios/15nA

Correlated hadron production: Where it matters

- CLAS12 data supports predictions from different MCs a very significant fraction of inclusive pions coming from correlated dihadrons (large VM fraction supported by latest e+e- studies).
- Most pions coming from VM decays will change:
 - number of e+e-/μ+μ- pairs produced in hadronization process (may be relevant for DY)
 - account of radiative corrections will require a different set of SFs (exclusive VMs may contribute)
 - modeling of spin effects will be different (opposite sign for Collins predicted)
 - interpretation has to account lower P_T/z in case $z=E_h/v$ involves the energy of rho instead of pion
- Analysis of SIDIS involving direct pions may require higher P_T, where direct pions dominate the single pion sample.

Using e+e- to estimate vector mesons

The invariant mass of dihadrons is contaminated by other vector mesons, with shape not changing significantly with hadronization fraction to spin-1 vs spin-0 mesons

decays of π and η are kinematically separeated from $\,\omega$ and $\,\rho^0$

Vector meson per electron can be independently estimated from $ep \rightarrow e'e+e-X$

Kinematical distributions of Muons at clas12

Does it matter if the pion comes from correlated pairs?

Gonzalez-Hernandez et al, PRD 98, 114005 (2018)

make sense out of q_T distributions

P_{T} of pions from rho decays: LUND string fragmentation

Dihadrons: key to hadronization?

How quarks hadronise?

- the "real" multiplicity may be lower with most hadrons produced from struck quark with large z, and low z fraction filled by VM decay pions
 - intrinsic k_T may be higher
 - the z-dependence enhanced at large z (may be tuned better to describe single and di-hadron distributions)
 - contributions to pions from target fragmentation may be less relevant

2) Most hadrons at accessible in SIDIS P_T s come from non-perturbative region, with direct pions dominating only the high P_T fraction

3) Fragmentation functions (production probability) of VMs, both unpolarized and polarized should be extracted from SIDIS and e+e- and compared to check the "independence" and "universality"

R.Seidl (preliminary) → at least 40% of dihadrons in e+e- are from rhos(good for universality)

SUMMARY

- The CLAS12 ata supports predictions from different MCs of very significant fraction of inclusive pions coming from correlated dihadrons (supporte by latest e+e-studies).
- Higher fraction of hadrons with spin-1 vs spin-0 in hadronization will have a number of implications
- The observables for pions from rhos have peculiar spin and momentum dependences and may require different RC, modeling, and interpretation
- Understanding of exclusive production of hadrons, in particular, at large t, where they show similar behavior, will be important for SIDIS
- Low lumi runs should have enough statistics (>10Mil reconstructed e-) to estimate the loss of event reconstruction efficiency (need for all pion combinations) for relevant distributions

The interpretation of di-hadron production in SIDIS, as well as interpretation of single-hadron production, the independent fragmentation, in particular, are intimately related to contributions to those samples from correlated semi-inclusive and exclusive di-hadrons in general, and rho mesons, in particular.

Support slides

Comparing MC and data (6715) v.6b2.0

Radiative DIS

SSA for pions from ρ (Collins effect,...)

H. Avakian, CLAS Col. M., June

RGA-Invariant mass of pion pairs $M\pi\pi$

Multiplicities from data consistent with multiplicities coming from CLAS12 LUND MC

Dihadron production

H. Avakian, UConn, June 13

SIDIS ehX: CLAS12 data

 Pion counts for normalized e'X events (uncorrected for acceptance) are consistent with clas12 LUND MC

Additional complications: Experiment can't measure just 1 SF

I. Akushevich et al

$$\sigma = \sigma_{UU} + \sigma_{UU}^{\cos\phi} \cos\phi + S_T \sigma_{UT}^{\sin\phi_S} \sin\phi_S + \dots$$

Due to radiative corrections, ϕ -dependence of x-section will get multiplicative R_M and additive R_A corrections, which could be calculated from the full Born (σ_0) cross section for the process of interest

$$\sigma_{Rad}^{ehX}(x,y,z,P_T,\phi,\phi_S) \to \sigma_0^{ehX}(x,y,z,P_T,\phi,\phi_S) \times R_M(x,y,z,P_T,\phi) + R_A(x,y,z,P_T,\phi,\phi_S)$$

Due to radiative corrections, ϕ -dependence of x-section will get more contributions •Some moments will modify

•New moments may appear, which were suppressed before in the x-section

Simplest rad. correction $R(x, z, \phi_h) = R_0(1 + r \cos \phi_h)$

Correction to normalization $\sigma_0(1 + \alpha \cos \phi_h) R_0(1 + r \cos \phi_h) \rightarrow \sigma_0 R_0(1 + \alpha r/2)$

Correction to SSA

 $\sigma_0(1+sS_T\sin\phi_S)R_0(1+r\cos\phi_h)\to\sigma_0R_0(1+sr/2S_T\sin(\phi_h-\phi_S)+sr/2S_T\sin(\phi_h+\phi_S))$

Correction to DSA

$$\sigma_0(1 + g\lambda\Lambda + f\lambda\Lambda\cos\phi_h)R_0(1 + r\cos\phi_h) \rightarrow \sigma_0R_0(1 + (g + fr/2)\lambda\Lambda)$$

Simultaneous extraction of all moments is important also because of correlations!

Jefferson Lab

H. Avakian, CLAS Col. M., June

The π +/ π - pairs out of ρ -region may still be generated by ρ s

H. Avakian, CLAS Col. M., June

All events with parent of π + is ρ 0

P_{T} of pions from rho decays: LUND string fragmentation

Background events

There are ~10% with 2 rho+/rho0/rho- (dashed show K*0 and K*+)

Jefferson Lab


```
! default PARJ(11) fraction of spin 1 light mesons (rho)
   cl parj11=0.7
   cl parj12=0.4
                        ! default PARJ(12) fraction of spin 1 strange mesons (affects K*s)
                        ! default PARJ(14) : (D = 0.) is the probability that a spin = 0 meson is produced
   cl parj14=0.0
with an orbital angular momentum 1, for a total spin = 1.
   cl pari15=0.0
                        ! defaultPARJ(15) : (D = 0.) is the probability that a spin = 1 meson is produced with
an orbital angular momentum 1, for a total spin = 0.
   cl parj16=0.0
                        ! defaultPARJ(16) : (D = 0.) is the probability that a spin = 1 meson is produced with
an orbital angular momentum 1, for a total spin = 1.
   cl parj17=0.0
                        ! defaultPARJ(17) : (D = 0.) is the probability that a spin = 1 meson is produced with
an orbital angular momentum 1, for a total spin = 2.
С
   cl parj21=0.4
                        ! default PARJ(21) for the width of P T distribution default in JETSET 0.36
   cl parj41=0.30
                        ! default parameter a in (1-z)<sup>^</sup>a large z-suppression in FF
```

cl_parj42=0.58 ! default parameter b in exp(-bm_\perp^2/z) in FF

Parameter affecting single pion P_T(parj21), z(parj41)

Dihadrons and Vector meson contributions

- 1) Should we worry about pions/kaons coming from vector meson decays?
- 2) What about $\,\rho\text{+}$ and $\rho\text{-}$
- 3) What do we know about relevant observables for pions specifically coming from vector meson decays
- 4) What about SIDIS rhos (can we measure?)
- 5) What is radiative correction due to rho?
- 6) Vector meson as resonance in dihadron production?

32

Hard exclusive meson production from clas6

Q²-dependence of beam SSA

Study for Q² dependence of beam SSA allows to check the higher twist nature and access quark-gluon correlations.

JSA 33

P_T -dependence of beam SSA

 $A_{LU} \propto g^{\perp}(x) D_1(z)$

Study for SSA transition from non-perturbative to perturbative regime. EIC will significantly increase the P_{T} range.

For a given lumi (30min of runtime with L= 10^{35} cm⁻²s⁻¹) and given bin in hadron z and P_T, higher energy provides higher counts and wider coverage in x and Q²

For a given lumi (30min of runtime with 10^{35}) and given bin in hadron z and P_T , higher energy provides higher counts and wider coverage in x and P_T to allow studies of correlations between longitudinal and transverse degrees of freedom

For a given lumi (30min of runtime) and given bin in hadron z and P_T , higher energy provides higher counts and wider coverage in Q^2 , allowing studies of Q^2 evolution of 3D partonic distributions in a wide Q^2 range.

Choosing binning (x vs Q²)

SFs defined for practically a full grid

Fixed beam energy limits the coverage

Detector acceptance limits further the coverage

Need theory guidance to put effort on small x,Q² region

38

Binning in DIS

For small bins in x-Q² or x-y, spread in other kinematical variables is becoming small (x2-3 resolution in θ and E'), reducing the role of bin-centering corrections and variations of structure functions in the bin

Jefferson Lab

Binning in DIS

With small bins x,y-binning will be much better for extraction of SFs

- 1) scale variable
- 2) fixed range
- 3) smaller change in resolution

Comparing different DIS models

Comparing DIS MCs (Bosted vs RadGen)

RC change few % with input SFs, and can affect precision measurements Bins with large RC could be eliminated from first stage of data analysis

RGB lumi-dependence: ratios/15nA

• With higher statistics can define the optimal lumi.

1.6 1 Ι_{π+π}(d)

1.2

በ ጸ

1.4

0.2

Collins effect

If unfavored Collins fragmentation dominates measured π - vs π +, why K- vs K+ is different?

HT-distributions and dihadron SIDIS

Compare single hadron and dihadron SSAs

$$\frac{M}{M_h} x e(x) H_1^{\triangleleft} \left(z, \zeta, M_h^2 \right) + \frac{1}{z} f_1(x) \widetilde{G}^{\triangleleft} \left(z, \zeta, M_h^2 \right)$$

$$\frac{M}{M_h} x h_L(x) H_1^{\triangleleft} \left(z, \zeta, M_h^2 \right) + \frac{1}{z} g_1(x) \widetilde{G}^{\triangleleft} \left(z, \zeta, M_h^2 \right)$$

Only 2 terms with common unknown HT G~ term!

Higher twists in dihadron SIDIS collinear (no problem with factorization)
 Je Bell can measure K+π- dihadron fragmentation functions

🍘 📢 46

Transverse momentum distributions of partons

H. Avakian, CLAS Col. M., June

Chiral odd HT-distribution

Azimuthal moments with unpolarized target

Azimuthal moments with unpolarized target

SSA with unpolarized target

SSA with unpolarized target

H. Avakiad Lat ASOC 25 M., June

SSA with long. polarized target

SSA with long. polarized target

SSA with unpolarized target

SSA with unpolarized target

Twist-3 PDFs : "new testament"

$$\begin{aligned} \frac{1}{2Mx} \operatorname{Tr} \left[\tilde{\Phi}_{A\alpha} \, \sigma^{\alpha +} \right] &= \tilde{h} + i \, \tilde{e} + \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M} \left(\tilde{h}_T^{\perp} - i \, \tilde{e}_T^{\perp} \right), \\ \frac{1}{2Mx} \operatorname{Tr} \left[\tilde{\Phi}_{A\alpha} \, i \sigma^{\alpha +} \gamma_5 \right] &= S_L \left(\tilde{h}_L + i \, \tilde{e}_L \right) - \frac{p_T \cdot S_T}{M} \left(\tilde{h}_T + i \, \tilde{e}_T \right), \\ \frac{1}{2Mx} \operatorname{Tr} \left[\tilde{\Phi}_{A\rho} \left(g_T^{\alpha\rho} + i \epsilon_T^{\alpha\rho} \gamma_5 \right) \gamma^+ \right] &= \frac{p_T^{\alpha}}{M} \left(\tilde{f}^{\perp} - i \tilde{g}^{\perp} \right) - \epsilon_T^{\alpha\rho} S_{T\rho} \left(\tilde{f}_T + i \tilde{g}_T \right) \\ &- S_L \frac{\epsilon_T^{\alpha\rho} p_{T\rho}}{M} \left(\tilde{f}_L^{\perp} + i \, \tilde{g}_L^{\perp} \right) - \frac{p_T^{\alpha} \, p_T^{\rho} - \frac{1}{2} \, p_T^2 \, g_T^{\alpha\rho}}{M^2} \, \epsilon_{T\rho\sigma} \, S_T^{\sigma} \left(\tilde{f}_T^{\perp} + i \tilde{g}_T^{\perp} \right), \end{aligned}$$

ρ (770) DECAY MODES

Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level		_	(•) • • •		Scale factor
$\Gamma_1 \pi \pi$	~ 100	%	-	Mode		Fraction (Γ_i/Γ)	Confidence leve
$ \begin{array}{ccc} \Gamma_2 & \pi^{\pm} \pi^0 \\ \Gamma_3 & \pi^{\pm} \gamma \\ \Gamma_4 & \pi^{\pm} \eta \\ \Gamma_5 & \pi^{\pm} \pi^+ \pi^- \pi \end{array} $	$ ho(770)^{\pm}$ decays ~ 100 (4.5 ± 0.5 < 6 < 2.0	%) $\times 10^{-4}$ S=2.2 $\times 10^{-3}$ CL=84% $\times 10^{-3}$ CL=84%	Γ ₁ Γ ₂ Γ ₃	$ \begin{array}{l}\pi^{+}\pi^{-}\pi^{0}\\\pi^{0}\gamma\\\pi^{+}\pi^{-}\end{array} $		(89.3 ± 0.6) (8.40 ± 0.22) (1.53 ± 0.06)	% % S=1.8 %
Ĵ	$\rho(770)^0$ decays		Г ₄	neutrals (excluding π^0	γ)	(7 + 7)	$\times 10^{-3}$ S=1.1
$ \begin{array}{ccc} \Gamma_6 & \pi^+ \pi^- \\ \Gamma_7 & \pi^+ \pi^- \gamma \\ \Gamma_8 & \pi^0 \gamma \\ \Gamma_8 & \pi^0 \gamma \end{array} $	~ 100 (9.9 ±1.6 (4.7 ±0.6 (200+0.21	%) × 10 ⁻³) × 10 ⁻⁴ S=1.4	Г ₅ Г ₆	$\eta \gamma \pi^0 e^+ e^-$		(4.5 ±0.4)) (7.7 ±0.6))	$\times 10^{-4}$ S=1.1 $\times 10^{-4}$
$ \begin{array}{ccc} \Gamma_{0} & \eta \gamma \\ \Gamma_{10} & \pi^{0} \pi^{0} \gamma \\ \Gamma_{11} & \mu^{+} \mu^{-} \end{array} $	$\begin{array}{c} (3.00 \pm 0.21 \\ (4.5 \pm 0.8 \\ [a] (4.55 \pm 0.28 \end{array}$	$) \times 10^{-5}$) × 10 ⁻⁵) × 10 ⁻⁵	Γ ₇ Γ ₈	$\pi^{0}\mu^{+}\mu^{-}$ $\eta e^{+}e^{-}$ + -		(1.34±0.18) :	× 10 ⁻⁴ S=1.5
HTTP://PDG.LB	SL.GOV Page 11 Create	d: 5/22/2019 10:04	Γ ₉ Γ ₁₀ Γ ₁₁ Γ ₁₂	$e^{+}e^{-}\pi^{0}\pi^{0}$ $\frac{Mode}{\Gamma_{1} \qquad K^{+}K^{-}}$	φ(1020) DECAY	(7.36 ± 0.15) < 2 MODES Fraction (Γ_i/Γ) (49.2 ± 0.5)	$ \begin{array}{c} \times 10^{-5} \qquad S=1.5 \\ \times 10^{-4} \qquad CL=90\% \\ \frac{Scale \ factor/}{Confidence \ level}} \\ \frac{15\%}{\%} \\ \end{array} $
Citation: M. Tanabas	shi <i>et al.</i> (Particle Data Group), Phys. Rev. D 98 , 030001	(2018) and 2019 update	Γ ₁₃ Γ ₁₄ Γ ₁₅	$ \begin{array}{cccc} \Gamma_2 & \mathcal{K}_L^0 \mathcal{K}_S^0 \\ \Gamma_3 & \rho \pi + \pi^+ \pi^- \pi^0 \\ \Gamma_4 & \rho \pi \\ \Gamma_5 & \pi^+ \pi^- \pi^0 \\ \Gamma_6 & \eta \gamma \\ \Gamma_7 & 0 \end{array} $		(34.0 ± 0.4) (15.24 ± 0.33) (1.303 ± 0.025)	% S=1.3 % S=1.2 % S=1.2
$\Gamma_{12} e^+ e^- \Gamma_{13} \pi^+ \pi^- \pi^0$	[a] (4.72 ± 0.05 ($1.01 + 0.54 \pm 0.036$	$) \times 10^{-5}$ 0.34) $\times 10^{-4}$	Г ₁₆	$\Gamma_7 = \pi^{\circ} \gamma$ $\Gamma_8 = \ell^+ \ell^-$ HTTP://PDG.LBL.GOV	Page 3	(1.30 ±0.05) 5 — Created: 5	5/22/2019 10:04
$ \begin{array}{ccc} \Gamma_{14} & \pi^{+}\pi^{-}\pi^{+}\pi \\ \Gamma_{15} & \pi^{+}\pi^{-}\pi^{0}\pi^{0} \\ \Gamma_{16} & \pi^{0}e^{+}e^{-} \\ \Gamma_{17} & \eta e^{+}e^{-} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$) \times 10^{-5}$) $\times 10^{-5}$ $\times 10^{-5}$ CL=90%	Γ ₁₇ Γ ₁₈ Γιο				0% 0%0% ۱۵%
[a] The $\omega \rho$ interval ρ interval ρ small. If \times 0.99785.	erference is then due to $\omega \rho$ mixing only $\rho = \mu \mu^+ \mu^-$	y, and is expected to $\rho^{0} \rightarrow e^{+}e^{-}$	Γ ₂₀	Citation: M. Tanabashi <i>et al.</i> (P: $\Gamma_9 = e^+ e^-$ $\Gamma_{10} = \mu^+ \mu^-$	article Data Group), Phys.	Rev. D 98, 030001 (2018 (2.973±0.034) > (2.86 ±0.19) >) and 2019 update 0% × 10 ⁻⁴ S=1.3 0%

 ω (782) DECAY MODES