Search for Exotic Glue in Nuclei Gluonic Transversity in Polarized DIS

J. Maxwell

CLAS Collaboration Meeting June 19th, 2019

Outline

1 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches 2 Jefferson Lab Measurement JLab Polarized Target Hall B?

3 Gluonometry at the EIC

Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target Hall B?
 Gluonometry at the EIC

Gluon Structure of Nuclei

• Understanding glue is a key challenge of NP and central goal of EIC

Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei

- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive **only** to gluonic states in the nucleus: $\Delta(x, Q^2)$

Gluon Structure of Nuclei

• Understanding glue is a key challenge of NP and central goal of EIC

Studying gluons is tricky

- Gluon does not couple to photon
- Probed indirectly by electron scattering from nuclei

- A nuclear glue effect, free from contributions of any nucleon, could offer invaluable view of nuclear structure
- "Nuclear Gluonometry" (Jaffe, Manohar, 1989) offers a probe sensitive **only** to gluonic states in the nucleus: $\Delta(x, Q^2)$

Double Helicity-Flip Structure Function $\Delta(x,Q^2)$

- $\Delta(x, Q^2)$ corresponds to helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons
 or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - Gluons not associated with an individual nucleon
- ciated with an
- Unpolarized e beam on transversely polarized nuclei, spin ≥ 1
 - Primary challenge of measurement is polarized target or source
- Moments calculable in Lattice QCD

Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- $\Delta(x, Q^2)$ corresponds to helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons
 or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - Gluons not associated with an individual nucleon

- Unpolarized e beam on transversely polarized nuclei, spin ≥ 1
 - Primary challenge of measurement is polarized target or source
- Moments calculable in Lattice QCD

Double Helicity-Flip Structure Function $\Delta(x, Q^2)$

- $\Delta(x, Q^2)$ corresponds to helicity amplitude $A_{+-,-+}$
 - Photon helicity flip of two
 - Unavailable to bound nucleons or pions
 - Purely gluonic observable
- Hadrons: Gluonic Transversity
- Nuclei: Exotic Glue
 - Gluons not associated with an individual nucleon
 - Unpolarized e beam on transversely polarized nuclei, spin > 1
 - Primary challenge of measurement is polarized target or source
- Moments calculable in Lattice QCD

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 ϕ ($s\bar{s}$)
 - $m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical *d* underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

Lattice Calculations

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 ϕ ($s\bar{s}$)
 - $m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical *d* underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

Lattice Calculations

Lattice QCD Guidance for Δ

- Initial calculations for first moment of Δ on spin-1 ϕ ($s\bar{s}$)
 - $m_{\pi} = 405 \,\mathrm{MeV}$
 - Gave definitive signal¹
- Following year, first moment of Δ calculated on non-physical d
 - $m_{\pi} = 806 \,\mathrm{MeV}$
 - Again definitive signal was seen²
- Results have generated significant interest in an observable mostly ignored since 1989
- Calculation with physical *d* underway

¹Detmold, Shanahan, P.Rev.D 94, 2016 ²NPLQCD Collab, P.Rev.D 96, 2017

Measurement Approaches

Where do we start looking?

Measuring $\Delta(x,Q^2)$ via DIS

- Transversely aligned, spin-1 target and unpolarized electron incident from -z
- In the Bjorken limit, double helicity component of the hadronic tensor $W^{\Delta=2}_{\mu\nu,\alpha\beta}(E,E')$ becomes (dropping higher twist structure functions)¹:

$$\lim_{Q^2 \to \infty} \frac{d\sigma}{dx \, dy \, d\phi} = \frac{e^4 ME}{4\pi^2 Q^4} \left(xy^2 F_1(x, Q^2) + (1-y)F_2(x, Q^2) - \frac{x(1-y)}{2}\Delta(x, Q^2)\cos 2\phi \right)$$

¹Jaffe, Manohar, Phys Letters B 223 (2) (1989).

For a spin-1 target polarized at angle θ_m from the *z*-axis and electron incident from -z, target spin $\lambda_m = (1, 0, -1)$:

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4}c_m(3\cos^2\theta_m - 1)$$
$$c_m = 3|\lambda_m| - 2$$

Differences of cross sections: N_+, N_0, N_- for $\lambda_m = (1, 0, -1)$

For a spin-1 target polarized at angle θ_m from the *z*-axis and electron incident from -z, target spin $\lambda_m = (1, 0, -1)$:

$$\frac{d\sigma}{dx\,dy\,d\phi}(\lambda_m) = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{2}{3}a_mb_1 + \frac{1-y}{xy^2}\left(F_2 + \frac{2}{3}a_mb_2\right) - \frac{1-y}{y^2}c_m\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

with

$$a_m = \frac{1}{4}c_m(3\cos^2\theta_m - 1)$$
$$c_m = 3|\lambda_m| - 2 \quad \Rightarrow \quad c_m = (1, -2, 1)$$

Differences of cross sections: N_+, N_0, N_- for $\lambda_m = (1, 0, -1)$

Average over Polarization: $N_+ + N_- + N_0 \Rightarrow \bar{\sigma}$

•
$$c_+ + c_0 + c_- = 0$$

$$\frac{d\bar{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left(F_1 + \frac{1-y}{xy^2}F_2\right)$$

- Of course, no Δ dependence
- Δ also cancels out of vector polarization difference $(N_+ - N_0) + (N_0 - N_-) = N_+ - N_-$ • $c_+ - c_- = 0$

Tensor Polarization: $(N_{+} - N_{0}) - (N_{0} - N_{-}) \Rightarrow \Delta \sigma$

•
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left((3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x, Q^2)\cos(2\phi) \right)$$

- Tensor structure functions b₁, b₂ contribute significantly
- Unless! $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Tensor Polarization: $(N_{+} - N_{0}) - (N_{0} - N_{-}) \Rightarrow \Delta \sigma$

•
$$c_+ - 2c_0 + c_- = 6$$

$$\frac{d\Delta\sigma}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left((3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2} 6\sin^2\theta_m \Delta(x, Q^2)\cos(2\phi) \right)$$

- Tensor structure functions b_1 , b_2 contribute significantly
- Unless! $(3\cos^2\theta_m 1) = 0 \Rightarrow \theta_m = 54.7^\circ$

Measurement Approaches

Difference of Polarized and Unpolarized:

$$N_+ - \bar{N} = N_+ - \frac{1}{3}(N_+ + N_- + N_0) = \frac{1}{3}(N_+ - N_0) \Rightarrow \hat{\sigma}$$

•
$$c_+ - c_0 = 1$$

$$\frac{d\hat{\sigma}}{dx\,dy\,d\phi} = \frac{2y\alpha^2}{Q^2} \left(\frac{1}{6}(3\cos^2\theta_m - 1)(b_1 + \frac{1-y}{xy^2}b_2) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)\right)$$

• Again tensor structure functions b_1 , b_2 contribute significantly unless $\theta_m = 54.7^{\circ}$

3 ways to measure $\Delta(x,Q^2)$

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

- 1 Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence
 - Need azimuthal detector acceptance
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

3 ways to measure $\Delta(x,Q^2)$

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

- 1 Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence
 - Need azimuthal detector acceptance
- 2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Measurement Approaches

3 ways to measure $\Delta(x, Q^2)$

$$\underbrace{(3\cos^2\theta_m=1)\left(b_1+\frac{1-y}{xy^2}b_2\right)}_{(y^2-y^2)} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Leverage $\cos(2\phi)$ to isolate $\Delta(x,Q^2)$ dependence

- Need azimuthal detector acceptance
- 2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Change polarization to produce N₊, N₋ and N₀ yields
- Form difference of vector polarized and unpolarized cross sections
 - $\theta_m = 54.7^\circ$ to cancel b_1 , b_2 dependence
 - Lose cancellation of acceptances, efficiencies

Measurement Approaches

3 ways to measure $\Delta(x, Q^2)$

$$\underbrace{(3\cos^2\theta_m=1)\left(b_1+\frac{1-y}{xy^2}b_2\right)}_{(y^2-y^2)} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Leverage $\cos(2\phi)$ to isolate $\Delta(x, Q^2)$ dependence

- Need azimuthal detector acceptance
- 2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - $\theta_m = 54.7^\circ$ to cancel b_1, b_2 dependence
 - Change polarization to produce N_+ , N_- and N_0 yields

3 Form difference of vector polarized and unpolarized cross sections

- $\theta_m = 54.7^\circ$ to cancel b_1, b_2 dependence
- Lose cancellation of acceptances, efficiencies

Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a multi-nucleonic effect
 - Expected larger in compact nuclei (like EMC effect?)
 - Perhaps explains enhanced LQCD signal with larger m_{π} , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
 - Expect two nucleons to good approximation
- Something heavier: Li? $\alpha + d$
- Practical limitations from available polarized targets
 - Long history of polarized p and d in solid targets
 - Lithium Hydride and Deuteride: ⁶LiH,⁶LiD, also ⁷LiH
 - Ammonia: ¹⁴NH₃,¹⁴ND₃, also ¹⁵NH₃
- Or, for *eA* collider, polarized ion sources
 - D. Alkalis? ⁶Li, ⁷Li, ²³Na attractive options

Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a multi-nucleonic effect
 - Expected larger in compact nuclei (like EMC effect?)
 - Perhaps explains enhanced LQCD signal with larger m_{π} , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
 - Expect two nucleons to good approximation
- Something heavier: Li? $\alpha + d$
- Practical limitations from available polarized targets
 - Long history of polarized p and d in solid targets
 - Lithium Hydride and Deuteride: ⁶LiH,⁶LiD, also ⁷LiH
 - Ammonia: ¹⁴NH₃,¹⁴ND₃, also ¹⁵NH₃
- Or, for eA collider, polarized ion sources
 - D. Alkalis? ⁶Li, ⁷Li, ²³Na attractive options

Transverse Polarized Target Nuclei

- Need a spin >1 nucleus, but this is a multi-nucleonic effect
 - Expected larger in compact nuclei (like EMC effect?)
 - Perhaps explains enhanced LQCD signal with larger m_{π} , more compact d?
- Deuteron? Should be investigated, but may not offer best chance for discovery.
 - Expect two nucleons to good approximation
- Something heavier: Li? $\alpha + d$
- Practical limitations from available polarized targets
 - Long history of polarized p and d in solid targets
 - Lithium Hydride and Deuteride: ⁶LiH,⁶LiD, also ⁷LiH
 - Ammonia: ¹⁴NH₃, ¹⁴ND₃, also ¹⁵NH₃
- Or, for eA collider, polarized ion sources
 - D. Alkalis? ⁶Li, ⁷Li, ²³Na attractive options

Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target Hall B?
 Gluonometry at the EIC

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1-y}{xy^2}b_2\right) - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

② Form tensor asymmetry: $\mathcal{A} = rac{1}{A} rac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- Set target field at $\theta_m = 54.7^\circ$
- Yields at N₊, N₋ and N₀ separated in time: systematic headaches

3 Vector polarized minus unpolarized cross sections

- Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
- Lose advantage of asymmetry, systematic headaches

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

• Set target field at
$$\theta_m = 54.7^{\circ}$$

- Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- Over the section of the section o
 - Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m=1)\left(b_1+\frac{1-y}{xy^2}b_2\right)}_{(y^2)}-\frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- Set target field at $\theta_m = 54.7^\circ$
- Yields at N_+ , N_- and N_0 separated in time: systematic headaches
- ③ Vector polarized minus unpolarized cross sections
 - Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
 - Lose advantage of asymmetry, systematic headaches

$$\underbrace{(3\cos^2\theta_m=1)\left(b_1+\frac{1-y}{xy^2}b_2\right)}_{y^2} - \frac{1-y}{y^2}\sin^2\theta_m\Delta(x,Q^2)\cos(2\phi)$$

1 Not easy: need out of plane detectors for $\cos(2\phi)$

- Not standard in Halls A, C. SoLID?
- No transverse target in Hall B

2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{4} \frac{N_+ + N_- - 2N_0}{N_+ + N_- + 2N_0}$

- Set target field at $\theta_m = 54.7^\circ$
- Yields at N_+ , N_- and N_0 separated in time: systematic headaches

3 Vector polarized minus unpolarized cross sections

- Set target field at $\theta_m = 54.7^\circ$, vector polarization easier
- Lose advantage of asymmetry, systematic headaches

Kinematic Reach with 12 GeV CEBAF in Hall C

- 11 GeV, unpolarized e^- on fixed, polarized ${}^{14}\mathrm{NH}_3$
- Preliminary SHMS Monte Carlo (Gaskell, Arrington)
 - Transverse (not 54.7°!) UVa magnet (M. Jones)

θ	E (GeV)	E' (GeV)	$Q^2 \left({\rm GeV/c^2} \right)$	x	Rate (Hz)
10.5	11	5	1.842	0.164	170
10.5	11	4	1.474	0.112	152
10.5	11	3	1.105	0.074	138
10.5	11	2	0.737	0.044	100
15	11	5	3.748	0.333	28
15	11	4	2.999	0.228	30
15	11	3	2.249	0.15	32
15	11	2	1.499	0.089	34

JLab Solid Polarized Target

- Dynamic Nuclear Polarization
 - 5 T field, 1 K ⁴He evap. fridge
 - Dope material with paramagnetic radicals (NH₃: NH₂ or H)
 - Leverage e p spin coupling
 - μ-waves drive polarizing transitions
 - *e* relaxes to flip-flop with new *p*
- Irradiated Ammonia: 95% p, 40% d
 - Beam current <100 nA
 - P decay: anneals and replacement
- Workhorse DIS technique at SLAC, JLab; 2012's g_p^2 most recently², CLAS12 polarized target under testing

²Pierce, Maxwell, NIM A 738 (2014).

Polarization, Tensor Alignment and DNP

$$P = (N_{+} - N_{0}) + (N_{0} - N_{-})$$

= N_{+} - N_{-}
$$A = (N_{+} - N_{0}) - (N_{0} - N_{-})$$

= 1 - 3N₀

- Polarization and alignment can be anywhere in the black triangle
- At equal spin temperature, can be only on red curve:

$$A = 2 - \sqrt{4 - 3P^2}.$$

• For $P = 40\% \Rightarrow A = 13\%$

Nitrogen Polarization in Ammonia: Not Easy

- We can also relate polarization of N to p at EST:
- $P_N = \frac{4 \tanh((\omega_N/\omega_p) \arctan(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \arctan(P_p))}$
- At 95% *p*: 17% N
 - $P_N = 17\% \Rightarrow A_N = 2\%$
- NMR measurement is difficult
 - Peaks too far apart for one NMR scan (2.4 MHz)
 - Overcome at SMC with 2 sweeps, changing B field³

³B. Adeva, NIM A 419 (1998).

Nitrogen Polarization in Ammonia: Not Easy

• We can also relate polarization of N to p at EST:

 $P_N = \frac{4 \tanh((\omega_N/\omega_p) \arctan(P_p))}{3 + \tanh^2((\omega_N/\omega_p) \arctan(P_p))}$

- At 95% *p*: 17% N
 - $P_N = 17\% \Rightarrow A_N = 2\%$
- NMR measurement is difficult
 - Peaks too far apart for one NMR scan (2.4 MHz)
 - Overcome at SMC with 2 sweeps, changing B field³

³B. Adeva, NIM A 419 (1998).

Techniques to Improve P_N, A_N

- "RF Hole Burning"⁴
 - Used for ND₃, crucial for b_1 exp.
 - Vast separation of NMR peaks in N will help.
- Cross Spin Transfer
 - Drop magnetic field (56mT) for cross relaxation of *p* Zeeman, N quadrupolar systems
 - SMC: 40% $P_N \Rightarrow$ 12% A_N
- RF Spin Transfer
 - Same effect ultimately
 - RF to drive p N flip-flops
 - Allow dynamic pumping of N while μ-waves pump p

⁴P. Delheij, NIM A 251 (1986).

Starting polarization = 37% RF-induced alignment "up to 20%"

W. Meyer and E. Schiling, Proceedings of 4th Int'l Workshop on Polarized Target Materials and Techniques, Bonn (1984) 165.

Techniques to Improve P_N, A_N

- "RF Hole Burning"⁴
 - Used for ND₃, crucial for b_1 exp.
 - Vast separation of NMR peaks in N will help.
- Cross Spin Transfer
 - Drop magnetic field (56mT) for cross relaxation of *p* Zeeman, N quadrupolar systems
 - SMC: 40% $P_N \Rightarrow$ 12% A_N
- RF Spin Transfer
 - Same effect ultimately
 - RF to drive p N flip-flops
 - Allow dynamic pumping of N while $\mu\text{-waves pump }p$

⁴P. Delheij, NIM A 251 (1986).

Techniques to Improve P_N, A_N

- "RF Hole Burning"⁴
 - Used for ND₃, crucial for b_1 exp.
 - Vast separation of NMR peaks in N will help.
- Cross Spin Transfer
 - Drop magnetic field (56mT) for cross relaxation of *p* Zeeman, N quadrupolar systems
 - SMC: 40% $P_N \Rightarrow$ 12% A_N
- RF Spin Transfer
 - Same effect ultimately
 - RF to drive p N flip-flops
 - Allow dynamic pumping of N while μ -waves pump p

⁴P. Delheij, NIM A 251 (1986).

Jefferson Lab Letter of Intent 12-16-006 (Hall C)

- \sim 30 PAC days with solid polarized target⁵
 - Run with approved measurement of b_1 in Hall C
 - Ballpark 1% statistical error
 - Heavily dependent on achieved polarization
 - Systematic uncertainty on target polarization 4-5%
- LOI Reception, PAC 44
 - Encouragement with charges
 - Guidance on size of Δ from Lattice QCD
 - Polarized N target yet to be proven
 - Systematic uncertainty due to drifts in detector efficiencies, and luminosity over time should be studied

⁵arXiv:1803.11206 [nucl-ex]

Jefferson Lab Letter of Intent 12-16-006 (Hall C)

- \sim 30 PAC days with solid polarized target⁵
 - Run with approved measurement of b_1 in Hall C
 - Ballpark 1% statistical error
 - · Heavily dependent on achieved polarization
 - Systematic uncertainty on target polarization 4-5%
- LOI Reception, PAC 44
 - Encouragement with charges
 - Guidance on size of Δ from Lattice QCD
 - Polarized N target yet to be proven
 - Systematic uncertainty due to drifts in detector efficiencies, and luminosity over time should be studied

⁵arXiv:1803.11206 [nucl-ex]

Nuclear Gluonometry in Hall B?

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

1 $\cos(2\phi)$ offers $\Delta(x,Q^2)$ sensitivity

- Need to produce polarizing field transverse to beam
- Actually, only need to rotate out to 54.7°
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Nuclear Gluonometry in Hall B?

$$(3\cos^2\theta_m - 1)\left(b_1 + \frac{1 - y}{xy^2}b_2\right) - \frac{1 - y}{y^2}\sin^2\theta_m\Delta(x, Q^2)\cos(2\phi)$$

- 1 $\cos(2\phi)$ offers $\Delta(x, Q^2)$ sensitivity
 - Need to produce polarizing field transverse to beam
 - Actually, only need to rotate out to 54.7°
- 2 Form tensor asymmetry: $\mathcal{A} = \frac{1}{A} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N₊, N₋ and N₀ separated in time: systematic headaches
- Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Nuclear Gluonometry in Hall B?

- **1** $\cos(2\phi)$ offers $\Delta(x, Q^2)$ sensitivity
 - Need to produce polarizing field transverse to beam
 - Actually, only need to rotate out to 54.7°
- **2** Form tensor asymmetry: $\mathcal{A} = \frac{1}{4} \frac{N_+ + N_- 2N_0}{N_+ + N_- + 2N_0}$
 - Set target at $\theta_m = 54.7^\circ$
 - Yields at N_{+} , N_{-} and N_{0} separated in time: systematic headaches

- 3 Form difference of vector polarized and unpolarized cross sections
 - Set target at $\theta_m = 54.7^\circ$
 - Lose advantage of asymmetry, still have systematic headaches

Transverse Targets in CLAS12

- HD-Ice: transverse polarized target with bulk superconductor⁶
 - Lock in field at desired angle, then introduce into CLAS12
 - Bulk superconductor both shields longtudinal field and holds transverse
- For a DNP target, field uniformity requirement is more restrictive
 - Reduce target cell size?
- Second, transverse magnet inside CLAS12 5 T solenoid?
 - 3.5 T would rotate to 54.7°
 - BUT, need to keep $\int B \cdot dl$ low

⁶Statera, NIM A 882 (2018)

Transverse Targets in CLAS12

- HD-Ice: transverse polarized target with bulk superconductor⁶
 - Lock in field at desired angle, then introduce into CLAS12
 - Bulk superconductor both shields longtudinal field and holds transverse
- For a DNP target, field uniformity requirement is more restrictive
 - Reduce target cell size?
- Second, transverse magnet inside CLAS12 5 T solenoid?
 - 3.5 T would rotate to 54.7°
 - BUT, need to keep $\int B \cdot dl$ low

⁶Statera, NIM A 882 (2018)

Polarization vs. Field for ND₃ and NH₃ at 136 GHz

Outline

 Double Helicity-Flip Structure Function Lattice Calculations Measurement Approaches
 Jefferson Lab Measurement JLab Polarized Target Hall B?

Kinematic Reach at Electron-Ion Collider

EIC white paper

Polarized Ion Beam Possibilities

At EIC, $\Delta(x, Q^2)$ search becomes a problem of available ion sources and their corresponding depolarizing resonances.

Nucleus	Spin	Technique	Pol.	Flux	G
² H	1	OP, ABS	100%	1µA	-0.14
⁶ Li	1	OP, ABS	88%	2.4µA	-0.18
⁷ Li	$\frac{3}{2}$	OP, ABS			1.53
⁸ Li	2	TFM	$\sim 1\%$		
^{10}B	3	Not known			
²³ Na	$\frac{3}{2}$	OP, ABS	77%	6.5 <i>µ</i> A	0.55

Towards Design of an Optimized EIC Experiment

- Exploration of Δ in x, Q^2 , S, & A
 - How does effect change for different nuclear spin ≥ 1 ?
 - Spin-1/2 species important cross-check
 - How does effect change for different atomic masses?
 - Spin-1 ⁶Li vs. Spin-3/2⁷Li
- Simulate measurement for Inclusive DIS on Nuclei
- Estimate running time for given statistical uncertainties
 - Species choice informed by simulation
 - Loss of luminosity compared to JLab made up for by lack of dilution, kinematic coverage
- Fixed target experiment at JLab would be a crucial first exploration, provide high-*x* data for the production of moments

Summary

- $\Delta(x,Q^2)$ offers a rare look at gluonic components in the nucleus
 - Significant Lattice QCD result drives interest
 - Need spin \geq 1, polarized, nuclear target
 - Low *x*, where glue dominates, region of interest
- Jefferson Lab experiment still in pre-proposal stage
 - Polarized ¹⁴N target fertile for development
 - Transverse target in Hall B worth investigating
 - SoLID also a possibility
- EIC capable of thorough search
 - Vast low x exploration
 - Polarized ion sources needed, Li and Na most attractive
 - Spin manipulation of polarized, "heavy" ions crucial
 - Initial investigations towards measurements at eRHIC (R.Milner) and JLEIC (JDM) begun

JLab Nuclear Gluonometry Collab:

- JLab: M. Jones, C. Keith, J. Maxwell, D. Meekins
- MIT: W. Detmold, R. Jaffe, R. Milner, P. Shanahan
- Univ. of Virginia: D. Crabb, D. Day, D. Keller, O. Rondon
- Oak Ridge: J. Pierce

Thanks to A. Zelenski, V. Morozov, Y. Furletova

Thank you for your attention!

5 T Split-Pair Target Magnet

- Can we get $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
 - Better than 10⁻⁴ uniformity in 3x3x3 cm³ volume
- g_2^p ran with modified Hall B magnet
 - 54.7° not available
 - Alteration needed to get 50°
- New 5 T target magnet needed
 - ~\$500k

5 T Split-Pair Target Magnet

- Can we get $\theta_m = 54.7^\circ$
- Old Hall C Magnet, with largest opening angles, retired in 2012
 - Better than 10⁻⁴ uniformity in 3x3x3 cm³ volume
- g_2^p ran with modified Hall B magnet
 - 54.7° not available
 - Alteration needed to get 50°
- New 5T target magnet needed
 - ~\$500k

Spin Manipulation in Ring

- Depolarizing resonances when spin precession frequency = frequency of perturbing B field⁷
- Imperfection: $\nu_s = G\gamma = n$
- Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
- Anomalous g-factor G

- ⁷Li: G of 1.53 (like proton's 1.79) \Rightarrow easy
- ⁶Li: G of -0.18 (like deuteron's -0.14) \Rightarrow hard
- ²³Na: G of 0.55 could work at RHIC with more snakes
- Figure 8 makes for easier manipulation at lower G

⁷Bai, Courant *et al.*, BNL-96726-2012-CP, 2012.

Spin Polarized Alkali Sources

- Improved Heidelberg Source adds OP (1986)⁸
 - Laser pumped, modulated to pump both multiplets
 - ⁶Li: A = 85%, ²³Na: A = 77%
 - Polarization limited due to lack of full ionization

Spin Polarized Alkali Sources

- Improved Heidelberg Source adds OP (1986)⁸
 - Laser pumped, modulated to pump both multiplets
 - ⁶Li: A = 85%, ²³Na: A = 77%
 - Polarization limited due to lack of full ionization

Spin Polarized Alkali Sources

- Heidelberg Atomic Beam Polarized Source (1975)⁹
 - Laval nozzle, Sextupole Stern–Gerlach give m = +1/2
 - RF used for adiabatic transitions to fill other states
 - Surface ionization, heated tungsten strip
 - 6,7 Li: 0.57 < |P| < 0.65, 200 nA
 - 23 Na: 50% losses to P and current in ionization

⁹E. Steffens, NIM 143 (1977)

Starting JLEIC Modeling

- First work with JLEIC detector geometry, eA kinematics
- BeAGLE generator for *eD*, *eLi*, *eNa* (thanks to V. Morozov, M.Baker), GEMC geometry (thanks to Y.Furletova)

Starting JLEIC Modeling

- First work with JLEIC detector geometry, eA kinematics
- BeAGLE generator for *eD*, *eLi*, *eNa* (thanks to V. Morozov, M.Baker), GEMC geometry (thanks to Y.Furletova)

