Deeply Virtual Compton Scattering at 10.6 GeV with CLAS12

Guillaume CHRISTIAENS (University of Glasgow, CEA Saclay)

Thursday, June 20, 2019

Outline

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

Outline

• 1 - Introduction

- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering $ep \rightarrow ep\gamma$

 GPDs appear in the DVCS amplitude through Compton Form Factors (CFF) such as:

$$\mathcal{H} = \int_{-1}^{1} H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right) dx$$

 Experimentally we measure photon leptoproduction: interference of DVCS and Bethe-Heitler (BH)

$$\sigma_{(ep \to ep\gamma)} = |DVCS|^2 + |BH|^2 + Interference$$

 $e^{-}(k)$

BH at leading order

4

Beam-spin asymmetry

- Extraction of GPDs from DVCS with polarized lepton beam and unpolarized target
- Photon leptoproduction
 beam-spin asymmetry:

$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

At leading order the asymmetry is:

$$A_{LU} \simeq \frac{A\sin(\phi_{trento})}{1 + B\cos(\phi_{trento})} \qquad A = \frac{s_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}} \qquad B = \frac{\kappa c_1^{BH} + c_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}}$$

 κ known function of kinematical variables

e'

e

$$c_1^{\mathcal{I}}, \ c_0^{\mathcal{I}}, \ s_1^{\mathcal{I}}$$
 combinations of CFF

$$s_1^{\mathcal{I}} \propto Im(F_1\mathcal{H} + \xi(F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E})$$

 F_1, F_2 form factors

p'

 γ'

 ϕ_{trento}

DVCS event in CLAS12

Typical DVCS event:

- Electron in the forward detector (torus, DC, ToF, Cherenkov, Calorimeter)
- Photon in the forward tagger (calorimeter)
- Proton in the central detector (solenoid, Silicon, Micromegas and ToF)

Outlook

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

Preliminary selection and exclusivity

Final state with:

- High energy electron > 2GeV
- High energy photon > 3 GeV
- Proton
- $Q^2 = -q^2 > 1 \; GeV^2$
- $W^2 = (p+q)^2 > 4 \; GeV^2$

Selection of exclusive DVCS events:

- **Missing mass** $ep \rightarrow ep\gamma X$
- **Missing energy** $ep \rightarrow ep\gamma X$
- Cone angle: angle between measured and computed photon (using proton and electron)

First look at beam-spin asymmetry

0.2

0.1

60

0.2

0.4

0.6

 x_B

0.8

n

10

8

8.0

120

180

 Q^2 vs xB after exclusivity cuts

240

300

 φ_{trento} (°)

360

1000

100

10

1.0

Preliminary asymmetry: $A_{LU} = \frac{1}{P} \frac{N^+(\phi_{trento}) - N^-(\phi_{trento})}{N^+(\phi_{trento}) + N^-(\phi_{trento})}$ -0.1polarization P N^+ / N^- number of events with helicity + / --0.2 Residual background not yet subtracted Only statistical errors Q² (GeV²) 4 9 Integrated over all kinematic domain About 3% of RG-A statistics

Outlook

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

π^0 contamination

Pion electroproduction $ep ightarrow ep \pi^0 ightarrow ep \gamma \gamma$

If one of these happen:

- one photon is not detected
- one photon has too low energy
- the two photons are too close to be distinguished

Then we might take a pion event for a DVCS event \rightarrow contamination

Effect of this contamination

$$A_{LU} = \frac{1}{P} \frac{N^+(\phi_{trento}) - N^-(\phi_{trento})}{N^+(\phi_{trento}) + N^-(\phi_{trento})}$$

- π^0 have no or a very low asymmetry
- only appear in the denominator
- → Contamination reduces the asymmetry

π^0 contamination – Method 1

Goal: estimate π^0 contamination with a π^0 simulation

- Simulate π^0 with dynamics
- Compute number of π^0 in data and in the simulation (in a clean region) to find the scaling factor
- Scale simulation to the data

Missing mass squared $ep \rightarrow ep\gamma X \ (GeV^2)$

Preliminary pion contamination (red: total signal, blue contamination)

π^0 contamination – Method 2

Goal: estimate π^0 contamination with dynamics from the data

- Identify π^0 in the data
- Simulate decay of these pions (each pion is randomly decayed multiple times)
- The events with photons within exclusivity cuts become DVCS background

Missing mass squared $ep \rightarrow ep\gamma X (GeV^2)$

Preliminary pion contamination (red: total signal, blue contamination)

π^{0} contamination – Method 3

Goal: estimate π^0 contamination using a DVCS + π^0 simulation

- Generate both DVCS and π^0 with dynamics
- Background consist of all the events that are not DVCS

Missing mass squared $ep \rightarrow ep\gamma X (GeV^2)$

Preliminary pion contamination (red: total signal, blue contamination)

Warning: Issue with simulation/reconstruction Pid had to be based on MC banks

π^0 contamination – Conclusions

- Very preliminary but overall good agreement between all 3 method
 About 30% with the current exclusivity cuts
- Depends on the kinematics $-\varphi$ dependence

- Q2/xB dependence

Outlook

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- 4 BH- π^0 generator
- 5 Quick look at the new data
- Conclusion

BH- π^0 Generator – Goals and issues

Goal of the algorithm

- Be able to generate DVCS and Pi0 flat or from cross-section
 - pure DVCS with cross section
 - pure Pi0 with cross section
 - DVCS and Pi0 together with a correct cross-section ratio

Issues

- 1 BH cross-section is extremely high in some regions
 - Accept-reject algorithm is difficult to implement and extremely slow
- 2- How to generate 2 processes at "the same time" and on a slightly different 4D phase-space ?

BH- π^0 Generator – Algorithm

Issue 1 : Metropolis algorithm ...

$$1 - x_{i} \text{ random starting point } (4\text{D}: x = (Q^{2}, x_{B}, t, \varphi))$$

$$2 - x_{prop} \text{ new point on a gaussian around } x_{i}$$

$$3 - \text{Draw a random number } A \sim U_{[0,1]}$$

$$- \text{ if } A < \frac{f(x_{prop})}{f(x_{i})}, \quad x_{i+1} = x_{prop}$$

$$- \text{ else} , \quad x_{i+1} = x_{i}$$

$$4 - \text{Save } x_{i+1}, \text{ set } x_{i} = x_{i+1} \text{ and restart step 2} \quad x_{proposed} \quad x_{i}$$

Issue 2 : ... applied on the sums of the cross sections

Use $f(x) = \sigma_{BH}(x) + \sigma_{\pi^0}(x)$

Example of sequence of the algorithm (with flat cross section)

Example of Q^2 evolution for 3000 iterations (with real cross-section)

Outlook

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

A quick look at the new cooked data

Green = spring data train v2 (this winter) Red = fall data train v5 (last week)

ightarrow Not really comparable (spring vs fall) but great overall improvement

Outlook

- 1 Introduction
- 2 Previous main analysis steps and results
- 3 π^0 contamination
- $4 BH \pi^0$ generator
- 5 Quick look at the new data
- Conclusion

Conclusion

- π^0 contamination is being analyzed and understood
 - 3 different methods giving consistent results
- **DVCS** + π^0 simulation has been done
 - joint **DVCS** + π^0 simulation
 - Metropolis algorithm can be useful
- **Ready to analyze** a new set of cooked data
 - We can expect nice improvements by looking at newly cooked fall data compared to spring DNP data
- Would like to be able to do some **background merging**
 - Gemc background merging tool does not seem enough (example adc from data ≠ adc from simulation for several detectors)
- Clas12Tools to read HIPO4

Thanks !!

Backup

DVCS at 10.6 GeV with CLAS12 at Jefferson Lab

BH- π^0 Generator

- crosses: distribution flat weighted using accept-reject method
- lines: distribution according to a cross-section using Metropolis method

BH- π^0 Generator

- Distributions after reconstruction for 1M BH- π^0 events

DVCS at 10.6 GeV with CLAS12 at Jefferson Lab

BH- π^0 Generator

Number of particles from data

<number>

A quick look at the new cooked data

- Left = **spring data train v2** (this winter)
- Right = fall data train v5 (last week)
- Red = photon in **FT**
- Green = photon in **FD**

