BAND Detector Update

Florian Hauenstein, Efrain Segarra, Rey Cruz-Torres, CLAS Collaboration Meeting 06/20/19

The EMC Effect in DIS Scattering

Quark distributions (F₂) in nucleons bound in nuclei different to distributions in free nucleons, here: $F_2^C \neq 6 * F_2^d$

Short Range Correlations

Neutron Excess [N/Z] Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

Subedi et al., Science 320, 1476 (2008)

- NN pair with large relative momentum and small c.m momentum
- ~20% of nucleons in nuclei
- SRC pairs dominate nucleon momentum distribution above fermi momentum k_F
- np dominance of SRC pairs (about ~18 more likely than pp or nn)

EMC and SRC Correlation

- Are high-momentum nucleons responsible for the EMC effect?
- Does nucleon modification depend on nucleon momentum?

Tagged DIS on Deuterium

- "Tag" interacting nucleon by measuring spectator
- How does the bound nucleon structure function depend on nucleon momentum?
- Explain the EMC effect

CLAS12 and BAND

Overview of BAND

- 5 layers thick (36cm total) with veto layer (1cm thick)
- 140 scintillator bars
- Bar resolution < 200 ps
- 3 meters upstream of target
- 155° < θ < 176°, 200 msr
- Design neutron efficiency ~35% and momentum resolution ~1.5%
- Laser system for calibrations
 —> see Andrew's talk

BAND in HallB

Base Level Calibrations

- HV Gains ✓
- ADC calibration ✓
- TDC/FADC phase offset \checkmark
- TDC time walk \checkmark
- Effective velocity \checkmark
- Bar attenuation \checkmark
- Timing offsets \checkmark

- Neutron efficiency
- Neutron momentum resolution

Base Level Calibrations

- HV Gains ✓
- ADC calibration ✓
- TDC/FADC phase offset \checkmark
- TDC time walk \checkmark
- Effective velocity \checkmark
- Bar attenuation \checkmark
- Timing offsets \checkmark

- Neutron efficiency
- Neutron momentum resolution

L-R Calibration and Effective Velocity

Hauenstein | 06/20/2019

<u>(</u>))

OLD DOMINION

Timing Alignment

—> Improved resolution

Photon peak position before final timing alignment (after pre-calibration with laser)

—> Apply correction per bar

DIS Selection Cuts

$$Q^2 > 2 \,[\text{GeV}^2]$$

 $W > 2.2 \,[\text{GeV}]$

PID of event builder for e', no quality/fiducial cuts Only 1 hit in BAND for neutral PID

Runs 6327 - 6333, coatjava 5b.7.8

Beam energy 10.6 GeV Beam current 50nA

ToF/m Spectrum

One full day@50nA, DIS cuts, BAND neutral hits

ToF/m Spectrum

One full day@50nA, DIS cuts, BAND neutral hits

ToF/m Spectrum

One full day@50nA, DIS cuts, BAND neutral hits

Signal and Background at 50nA, DIS cuts

ToF/m: ADC > 5MeVee, x ranges

BAND Simulations

- Stand-alone Geant4 simulation
 - CLAS12 via acceptance map (no detailed detector simulation)
 - Simple CLAS12 momentum resolution
 - Tagged DIS neutrons and accidental background neutrons
 - Check of analysis methods and routines
- Implementation work for GEMC
 - BAND
 - Upstream Beam pipe ✓
 - Micromegas electronic boxes
 - CTOF PMTs and shielding
 - CND PMTs and shielding

BAND Hit Distribution

Upstream Beam Pipe in GEMC

parts are separated for better visibility

courtesy of Caleb Fogler, ODU

Upstream Beam Pipe in GEMC

parts are separated for better visibility

courtesy of Caleb Fogler, ODU

Summary and Outlook

- Tagged DIS measurements to explain EMC effect
- Finished first set of BAND calibrations
- Clear neutron signal in DIS kinematics
- S/B study to determine ADC cut
- Start implementing BAND and upstream components to GEMC

- Finishing of implementing BAND and other components to GEMC
- Developing analysis chain for physics channel with simulations
- **NEED** Fall 2019 low energy data for neutron efficiency and momentum resolution with

We didn't

Back up slides

Gain Curves: Optimizing HV

$$ADC = p_o \left(\frac{HV}{1500}\right)^{p_1}$$

Have most ADC channels possible for neutrons while not driving PMTs into non-linearity

Calibrating ADC to MeVee

L-R Offsets and Effective Velocity (old)

Taking Laser Data

- Photodiode output passes same electronics path as signals from bars
- Varying variable attenuator to scan over ADC range

Time Walk Correction

$$t_{\text{TDC,L}}_{R} - ref = A / \sqrt{ADC}_{L} + B$$

Typical fit 'quality'

(parameters extracted with run 261, see presentation from last week for details)

same curve after correction

What will be measured

- Measuring cross section ratios to minimize uncertainties
- Choose kinematics with minimal FSI $\theta_{rq} > 107^{\circ}$

$$\frac{\sigma_{DIS}(x'_{\text{high}}, Q_1^2, \alpha_s)}{\sigma_{DIS}(x'_{\text{low}}, Q_2^2, \alpha_s)} \cdot \frac{\sigma_{DIS}^{\text{free}}(x_{\text{low}}, Q_2^2)}{\sigma_{DIS}^{\text{free}}(x_{\text{high}}, Q_1^2)} \cdot R_{FSI} = \frac{F_2^{\text{bound}}(x'_{\text{high}}, Q_1^2, \alpha_s)}{F_2^{\text{free}}(x_{\text{high}}, Q_1^2)}$$

measurement theory

- $x'_{high} > 0.45$
- Expect no EMC effect at low x': $0.25 \le x'_{low} \le 0.35$

$$x'_{B} = \frac{Q^{2}}{2[(M_{d} - E_{s})\omega + \overrightarrow{p_{s}} \cdot \overrightarrow{q}]} \qquad x_{B} = \frac{Q^{2}}{2m_{N}\omega} \qquad \alpha_{s} = (E_{s} - p_{s}^{z})/m_{s}$$

DIS Recoil Tagging d(e,e'N)X - Expected Results

Bound F_2 / Free F_2

BAND and beam pipe in standalone Geant simulation

EMC Models

Mean Field Modifications

Short Range Correlations (SRC)

Theories

FSI in Tagged DIS

DEEPS showed little FSI at back angles.

BAND + CLAS

Calibrating with exclusive processes

d(e, e'p)n (measure n efficiency)

 $d(e, e'p\pi^+\pi^-)n$ (measure n efficiency)

 $d(e, e'pp\pi^{-})$ (study resolution in CLAS)

Note 1: low energy run in fall to study neutron efficiency due to currently limited statistics Note 2: Calibrations are too preliminary to study achievable resolution

Tagged DIS at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND)

Hall C: SHMS/HMS + Large Angle Detector (LAD)

