

Update: Studies of neutrino energy reconstruction using electron scattering data

Mariana Khachatryan - ODU

Outline

- 1. Introduction.
- 2. March 2019 status:
 - Analysis review ongoing.
 - Looked at (e,e'), (e,e'p) events with zero detected pions and photons.
 - Reconstructed energies E_{Cal}, E_{QE}.
 - Subtraction for undetected π^+ , π^- and extra p complete.
 - Started subtraction for undetected γ .
- 3. Status today:
 - > Completed subtraction for undetected π^+ , π^- , γ and extra p.
 - ➤ Modified e⁻ momentum correction.
 - Analyzed the 1.1 GeV e2a data.
 - Determined binding energy values for E_{Rec} calculations.

(Long Baseline) Oscillation Challenge

T2K experiment L=295km

T2K, Phys. Rev. D 91, 072010 (2015)

Energy Reconstruction for QE reactions

(1) Cherenkov detectors:

- Detect: leptons & pions
- Miss: protons and neutrons

(2) Tracking detectors:

- Detect: Charged particles + π⁰
- Miss: Neutrons and charged particles below threshold.

Use Lepton kinematics Assuming QE interaction

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$$

 ε -single nucleon separation energy M- nucleon mass

 m_l – outgoing lepton mass

- k_l, E_l -lepton three momentum, energy
- θ_l -lepton scattering angle

Use Final-State Calorimetry Assuming low residual excitations

$$E_{Cal} = E_l + \sum T_p + \varepsilon + \sum E_{\pi}$$

 T_p -kinetic energy of knock out proton E_{π} -energy of produced meson

E2a experiment

Targets:

 $\label{eq:classical_state} \begin{array}{l} \underline{\text{CLAS: }^{3}\text{He} \ , \ ^{4}\text{He} \ , \ ^{12}\text{C} \ , \ ^{56}\text{Fe} \\ \hline \text{T2K: } \ \text{CH} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ ^{3}\text{He} \ , \ ^{4}\text{He} \ , \ \text{C} \ , \ \text{Fe} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ ^{3}\text{He} \ , \ ^{4}\text{He} \ , \ \text{C} \ , \ \text{Fe} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ ^{3}\text{He} \ , \ ^{4}\text{He} \ , \ \text{C} \ , \ \text{Fe} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ ^{3}\text{He} \ , \ ^{4}\text{He} \ , \ \text{C} \ , \ \text{Fe} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ ^{3}\text{He} \ , \ ^{4}\text{He} \ , \ \text{C} \ , \ \text{Fe} \ , \ \text{H}_{2}\text{O} \\ \hline \text{Minerva: } \ \text{Ar} \ & \ \text{Miniboone: mineral oil (C, H, O)} \\ \hline \text{Nova: } \ \text{C}_{6}\text{H}_{3}(\text{CH}_{3})_{3} \\ \hline \text{DUNE: Ar} \ & \ \text{Ne} \end{array}$

QE Event Selection

As close to QE as one can get:

- Scattered electron,
- Knockout proton,
- Zero pion,
- Zero gammas in the EC.

Scale the e⁻ scattering data with $1/\sigma_{Mott}$ to have 'neutrino like' data!

Background Subtraction

Want 0π (e,e') and (e,e'p) events. Need to account for undetected π , γ and extra protons.

Subtract for π^{\pm} and γ :

Data Driven Correction:

- 1. Use measured (e,e' π^{\pm}/γ) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e') π^{\pm}/γ contributions,
- 4. Repeat for 2 π^{\pm}/γ , 3 π^{\pm}/γ .

Background Subtraction

Selecting non-radiation γ .

(e,e') π^{\pm}/γ subtraction

10

Subtract for undetected π^{\pm} , γ and multiple p.

Data Driven Correction:

- Use measured (e,e'p π^{\pm}/γ) events, 1.
- Rotate π around q to 2. determine their acceptance,
- Subtract (e,e'p) π^{\pm}/γ contributions 3.
- Do the same for 2p, 3p, $2p+\pi^{\pm}/\gamma$ etc 4.

⁵⁶Fe (e,e'p) 4.46 GeV

Weighted Counts

Subtraction converges 30⊢ ×10⁶ $N_{\pi^{\pm}/\gamma}$ =0 ⁵⁶Fe 4.4 GeV ⁵⁶Fe **Uncorr** 5 **1p1**π[±]/γ No undet. N_p *104 + 2p 0.24 0.08 0 0 4 + 3p 20 + 4p 1.13 0.40 80.0 0 0 + res 3 4.43 Contributions accounted for 2 10 2.00 0.04 7.52 0.33 1 0.12 4.83 0.92 23.70 15.86 0 0 3 2 4 $N_{\pi^{\pm}/\gamma}^{5}$ 0 1 ⁴ ^{4.5} ⁵ ⁵ ⁵ ⁵ ⁵ 1.5 2 2.5 3 3.5 1

Proton subtarction

Proton subtarction

2 GeV ³He (e,e'pp)n

e⁻ momentum correction

Solution: multiply e^{-} momentum by a different factor α in each sector

2 GeV

Correcting for binding energy

Results

Large A dependence

Large E dependence

E_{QE} vs E_{Cal}

Agreement between to methods doesn't imply correct energy reconstruction.

Fractional energy feed down

Summary

1. The first use of electron data to test neutrino energy reconstruction algorithms

- select zero-pion events to enhance quasi-elastic signal
 - \diamond Subtract for undetected π and extra p.
- just using scattered lepton (E_{QE})
 - ♦ used in Cherenkov-type neutrino detectors
- total energy of electron plus proton (E_{Cal})
 - \diamond used in calorimetric neutrino detectors
- 2. Only 0.1-0.66 of events reconstruct to within 5% of the beam energy
 - better for lighter nuclei
 - improved by a transverse momentum cut
- 3. Added 1GeV analysis.
- 4. Analysis complete.
- 5. Update note for committee.
- 6. Anticipate paper submission soon.

Chris Marshal (LBL)

Afroditi Papadopoulou (MIT@FNAL)

(e,e') π^{\pm}/γ subtraction

⁵⁶Fe (e,e'p) 4.46 GeV

Proton subtarction

