

Event Builder Status

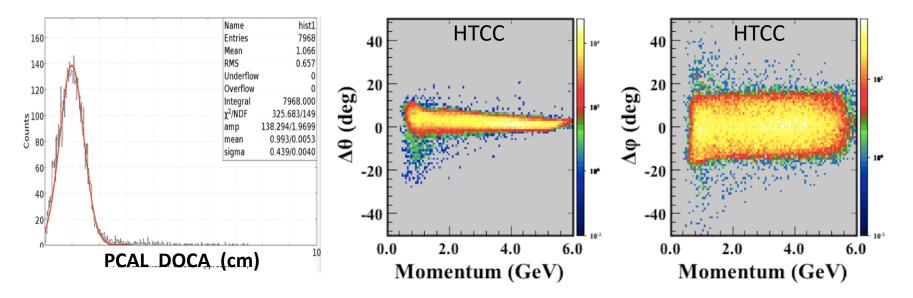
N. Baltzell CLAS Collaboration Meeting June 18, 2019

Overview

- "Event Builder" is the last CLAS12 service run, after all detectors
- Geometrically associates detector responses into particles
- Defines event start time, and does a basic particle identification
- Retrieves/analyzes various event-based quantities, e.g. helicity state
- Writes all info for physics analysis into DSTs (REC* banks)
- Documentation: https://clasweb.jlab.org/wiki/index.php/CLAS12_EventBuilder

EBAnalyzer.java	switch default, unassigned pid quality to 99	5 days ago
EBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
EBHBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
EBMatching.java	cherenkov matching fixes	8 days ago
EBTBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
🖹 EBio.java	disable scaler readout	5 days ago
EventBuilder.java	particle-htcc combos for looser matching requirements	5 days ago

EBCCDBConstants.java	Merge branch 'development' into ebdev-mrg	4 months ago
EBCCDBEnum.java	Merge branch 'development' into ebdev-mrg	4 months ago
EBConstants.java	EBConstants: cleanup	3 months ago
EBRadioFrequency.java	eb cleanup: move rf to rec instead of service	3 months ago
EBScalers.java	eb: cleanup unused imports	8 days ago
🖹 EBUtil.java	eb: cleanup unused imports	8 days ago
SamplingFractions.java	eb: move sampling fractions to dedicated class, add pid- and sector-d	5 months ago


Creating Particles

Charged Particles

• associate detector responses with tracks, geometrically, based on DOCA

Neutral Particles

• identify remaining trackless ECAL/CND hits as neutrals, assume straight trajectory, and associate with other detectors' unmatched, geometrically, based on DOCA

Currently loose, flat detector-dependent cuts, with minimum-DOCA hit chosen.

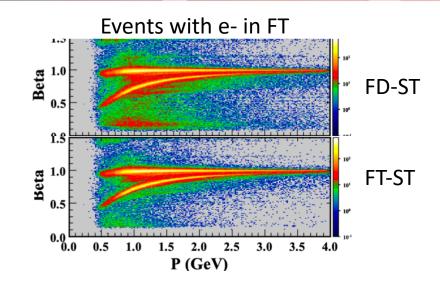
NEW! Many-to-one, track-to-hit relationships in coatjava-6+. This plays a minor role with real particles hitting the same TOF paddle, and a significant role for accommodating ghost tracks.

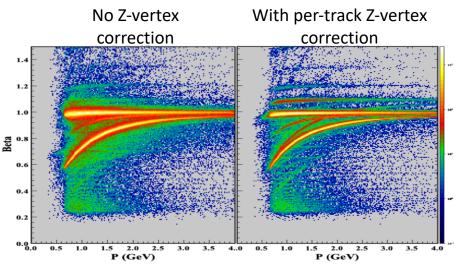
Timing information is currently ignored at this stage.

N. Baltzell - Event Builder Status - CLAS Collaboration Meeting - June 18, 2019

Event Start Time

Choose "Trigger Particle"

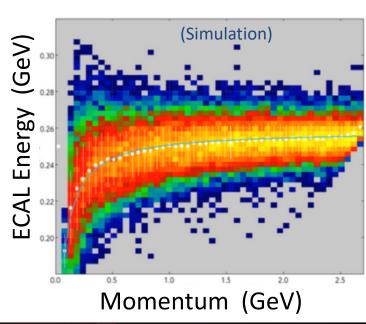

- highest energy e⁻ else e⁺, if one exists
- else highest momentum track with an FTOF hit, assumed a $\boldsymbol{\pi}$
- Forward Tagger (**NEW!**)
 - Uses <u>"shadow" bank</u>s, RECFT::Particle and RECFT::Event, just appending, when appropriate (i.e. no electron in FD), with new RECFT::Particle based on start time from FT, based on algorithm from FT analyzers
 - Take electron clusters in FT, and compare with all combos of tracks in FD and mass hypotheses, and that with the closest timing match (within half a beam bucket) is taken as the FT electron for start time


Construct its vertex time

based on path length, mass, momentum

Use nearest RF bunch to assign start time

- Correction for non-zero z-vertex is imminent
 - especially important for CTOF
 - looks like we'll first use per-track z-vertex correction due to unknown systematics (single z-vertex correction like CLAS6 doesn't provide improvement)



Lepton and Neutral Identification

e⁻e⁺ in Forward Detectors

- Charged Track ECAL, HTCC, and FTOF hits
 - PCAL > 60 MeV
 - HTCC #phe > 2
- ECAL sampling fraction
 - ±5σ sampling fraction parameterized in momentum
 - REC::Particle.chi2pid is N_{σ} from nominal, so tightening the critera can be done with simple cut on chi2pid
 - Sampling fraction in CCDB needs to be updated based on final calibration

Neutrals

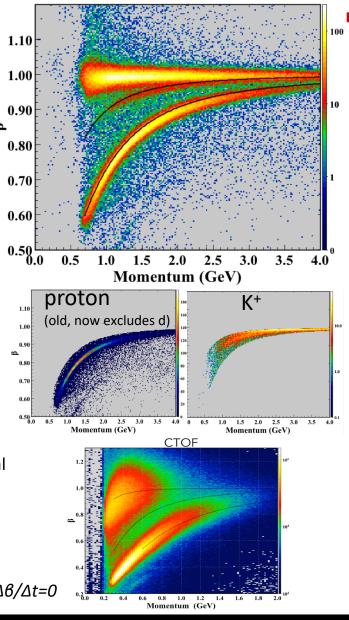
- Forward Detector
 - ECAL clusters unassociated with a track
 - seeds with PCAL first and matches to EC Inner/Outer
 - then seeds with EC Inner, and finally EC Outer
 - Also associates them with unmatched FTOF (currently unused)
 - Y
 - ECAL β>0.9,
 - Energy calculated from ECAL and sampling fraction parameterized in momentum
 - Sampling fraction in CCDB needs to be updated based on final calibration
 - neutron
 - β<0.9
 - Energy calculated from β assuming neutron mass

Central Detector

- CND clusters unassociated with a track assigned as neutrals
 - Also associates them with unmatched CTOF (currently unused)
- neutron
 - β<0.9
 - Energy calculated from β assuming neutron mass

Forward Tagger

- e⁻: matched calorimeter and hodoscope clusters
- γ: calorimeter cluster unmatched to hodoscope
- Energies based on calorimeter


Charged Hadron Identification

If a track fails e^{-}/e^{+} identification, assume it's a charged hadron and assign its identity based on minimizing the time difference between event start time t_0 and vertex time.

$$\Delta t_i = t_0 - \left[t_{FTOF} - \frac{L}{\beta_i(p)} \right], \quad i = \pi/K/p/d/\dots$$

- If no TOF info, pid=0
- Vetoes from Cerenkov
 - #photoelectrons greater than 2 and below kaon threshold \rightarrow reassign to π
- REC::Particle.chi2pid is a signed- N_{σ} (or a signed- χ) from nominal timing, based on σ per FTOF-paddle, so tightening the requirements can be done with a simple cut on chi2pid
- Can be extended to more sophisticated scheme, e.g. multi-dimensional likelihood, ML ...
- Will need updating from RICH, and maybe BAND

Plots are 10.6 GeV @ 5nA, require e^{-} for start time, and black curves are $\Delta B/\Delta t=0$

Jefferson Lab

DSTs (1)

High level HIPO banks for physics analyses

- Most DST bank names are prefixed by "REC", in event.json
 - <u>https://github.com/JeffersonLab/clas12-offline-</u> <u>software/blob/master/etc/bankdefs/hipo4/event.json</u>
 - REC::Event
 - run/event #, event time, trigger bits, helicity, etc
 - REC::Particle
 - pid, charge, momentum, etc
 - REC:: "ResponseType"
 - e.g. Calorimeter, Scintillator, Cherenkov, Track
 - hit/cluster energies, positions, times, shapes
 - contains pindex link to its particle
 - Note, this only contains responses associated with particles
- Also keep RUN::*, RAW::scaler banks, RAW::epics, and some helicity banks
- Documentation:
 - <u>https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs</u>

DSTs (2)

NEW BANK CHANGES AS OF HIPO4/coatjava6

Cleanup

- REC::Cherenkov.theta/phi
 use x/y/z
- REC:: Event.RUN/NEVENT/TYPE
 - use RUN::config instead
- REC::Track.*nomm*

Additions

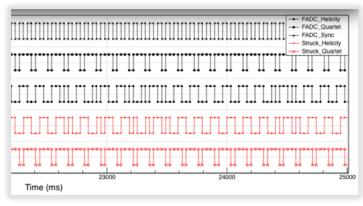
- RECFT::Particle
 - For FT-based start time and resulting hadron identification
 - "Shadow" bank; same row-ordering as REC::Particle, and only contains REC::Particle quantities that are start-timedependent
- HEL::online
 - Online delay-corrected helicity
- HIPO4, Tag=1 banks
 - HEL::flip
 - Only filled on flips, during serial decoding, for offline delay correction
 - RAW::epics
 - RUN::scaler
 - Calibrated beam charge
- Plus some other minor additions

Modifications

- REC::Particle.status
 - Now negative if it's the start-time particle, to accommodate RECFT::Particle without reordering
- REC::Traj
 - Switched from single detId to standard detector/layer conventions like other DST banks
- REC::Event
 - Bring naming conventions more consistent with everything else, drop old CLAS6 shorthands, some still unused
 - − NGPG → topology
 - − $EvCAT \rightarrow category$
 - STTime → startTime
 - − BCG → beamCharge
 - − Ptime \rightarrow procTime
 - − Helic → helicity and helicityRaw

See documentation and release notes:

https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs https://github.com/JeffersonLab/clas12-offline-software/releases/tag/6b.1.0



N. Baltzell - Event Builder Status - CLAS Collaboration Meeting - June 18, 2019

Helicity

- We have multiple readouts of the helicity state, in multiple types of hardware, for redundancy and cross-checking, as well as an online delay-correction as of 2019
- Direct Reporting
 - Spring 2018 only
 - easy, just read the FADC state from REC::Event.helicity
- Delayed Reporting
 - Fall 2018
 - Only offline correction possible
 - we tracked state changes during decoding and registered them in HEL::flip banks (Tag=1 for direct access in any file)
 - post-processing is required to validate and analyze the sequence
 - Spring 2019 and later
 - Online correction available in every event in HEL::online, can be cross-checked with offline version
- Note, in all instances we store both HWP-corrected and raw helicity for validation
 - and convention was finalized at +1/-1/0, for positive/negative/UDF
- Analysis software written in coatjava to read Tag=1, HEL::flip banks, on-the-fly during analysis and provide event-based helicity
- Validation performed, comparing the online and offline corrections and the different readouts, across ~100 file and a few runs
 - checked out good
 - despite some missing low-state readouts in FADCs that are correctable and occaisonal pileup in the scaler readout

TODO: offline delayed helicity

- Validate and finalize the offlinecorrection
 - Initial testing on ~100 files showed no issues, all sequences complete, and online/offline in agreement
 - Recently processed RG-A/K data showed some new gaps due to DAQ-busy to address
 - Software already adjusted to accommodate and correct for gaps, testing in progress
- Post-processing to populate the REC::Event.helicity variable for easy event-by-event access for non-coatjava analyses

٠

Documentation

- https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs
- <u>https://clasweb.jlab.org/wiki/index.php/CLAS12_EventBuilder</u>

Contents [hide]
1 Overview
2 Output Banks
3 Beam Helicity
4 Beam Radio Frequency
5 Particle Creation
5.1 Charged Particles
5.2 Neutral Particles
5.3 Forward Tagger
6 Event Start Time
7 Particle Identification
7.1 Electron/Positron
7.2 Charged Hadrons
7.2.1 Cherenkov Vetoes
7.3 RICH
7.4 Neutrals
8 CLAS Calibration Database
8.1 ECAL Sampling Fraction Parameterization

Contents [hide]					
1 Bank List					
2 Inter-Bank Linking					
3 Detector Identifiers					
4 Bank Details					
4.1 RUN::config					
4.2 REC::Event					
4.3 REC::Particle					
4.4 REC::"Response"					
4.4.1 REC::Traj					
4.4.2 Reverse Indexing					
5_Non-DST Detector Banks					

Please check it out when you have questions/concerns about DST format and Event Builder, and give feedback! *Almost all questions we've received about EB and DSTs were already answered there, else updated!*

Summary

Updates since March Meeting

- FT-based start time
 - available and used for particle identification in RECFT::Particle and RECFT::Event banks
- Many-to-one track-to-hit relationship
 - ghost tracks and real hit-sharing
- Online and offline delayed helicity corrections
- Use of tag=1 HIPO4 events for nonphysics events
 - Scalers, helicity, EPICS

TODO

- Finalize and post-process offline delayed helicity correction
 - Careful treatment of gaps
- Finalize z-vertex correction to start time
 - Currently requires a per-track correction to be effective
- Switch to trajectory banks for path lengths
 - Along with all other reconstruction services and calibration suites!
- Future
 - possible track-hit matching improvements, e.g. timing
 - alternative/better identification schemes
 - Incorporate RICH, and now BAND, pending input from detector groups

Validation Tests

Index of /clas12offline/distribution/coatjava/validation_files/eb

To check software progress, MC-based

- clas12-offline-software/validation
- test gemc files automatically downloaded from webserver
 - kept in sync with latest gemc version
- decoded, reconstructed, analyzed to perform
 - data sanity checks
 - yields, efficiency / misidentification
- A few are included in automatic Travis build tests
 - this has proven extremely useful, despite the occasional maintenance overhead

2-particle test events

- electron plus another, in different sectors
 - e⁻ : **1-9 GeV**
 - other (hadron/photon): 1-4.5 GeV
- Clas12FastMC at generator level to ensure expected trajectories intersect all relevant detectors
 - i.e. account for B-fields, acceptance
 - very useful tool, needs to be extended to CD/FT

Name	Last modified	Size Description		electronFTgamma.evio.gz	electronFTgamma.evio.gz 20-Apr-2018 16:2
				electronFTpion.evio.gz	electronFTpion.evio.gz 20-Apr-2018 16:2
Parent Directory		-		electrongamma.evio.gz	electrongamma.evio.gz 20-Apr-2018 16:2
a.2.2-fid-r10-10K	/ 16-Apr-2018 07:31	L -		electrongammaC.evio.gz	electrongammaC.evio.gz 20-Apr-2018 16:2
4a.2.2-fid-r10/	10-Mar-2018 16:08	3 -		electrongammaFT.evio.gz	electrongammaFT.evio.gz 20-Apr-2018 16:2
4a.2.2-fid-r11/	10-Mar-2018 15:59) -	1	electronkaon.evio.gz	electronkaon.evio.gz 20-Apr-2018 16:2
4a.2.3-fid-r10-100/	10-Jun-2018 12:11	L -	1	electronkaonC.evio.gz	electronkaonC.evio.gz 20-Apr-2018 16:2
<u>4a.2.3-fid-r10/</u>	20-Apr-2018 16:27	7 -		electronneutron.evio.gz	electronneutron.evio.gz 20-Apr-2018 16:2
4a.2.3-fid-r11/	20-Apr-2018 15:54	t -		electronneutronC.evio.gz	electronneutronC.evio.gz 20-Apr-2018 16:2
4a.2.4-fid-r10-100/	28-Aug-2018 13:52	2 -		electronpion.evio.gz	electronpion.evio.gz 20-Apr-2018 16:2
<u>4a.2.4-fid-r10/</u>	28-Aug-2018 10:10) -		electronpionC.evio.gz	
4a.2.5-fid-r11-100/	06-Nov-2018 21:03	3 -		electronproton.evio.gz	· · · · · · · · · · · · · · · · · · ·
<u>4a.2.5-fid-r11/</u>	06-Nov-2018 19:38	3 -		electronprotonC.evio.gz	
_					

F	Forward Detectors		MC Truth					
D			е	π	K	р	γ	n
		е	98					
	Р	π		89	17	<1		
	I D	К		5	72	<1		
(0	%)	р		3	5	95		
	(%)	γ					93	30*
		n					3	65

A rough efficiency based on 1K events for each, averaged over given kinematics, used to help track software development. For e / hadrons, demoninator requires a track; any other detector/reconstruction inefficiencies, kaon decay, track-matching, etc, are absorbed. Empty cell means <<1%. *Cut currently at β =0.9 (2 GeV).

N. Baltzell - Event Builder Status - CLAS Collaboration Meeting - June 18, 2019

