RGB Proposal: Quasi-Real Photoproduction on Deuterium

FLORIAN HAUENSTEIN, ODU (CONTACT PERSON)

WILLIAM PHELPS, GWU (SPOKESPERSON)

STEPAN STEPANYAN, JLAB (SPOKESPERSON)

OLD DOMINION UNIVERSITY

CLAS COLLABORATION MEETING JUNE 2019, 06/21/19

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Run Group B Proposal: Quasi-real Photoproduction on Deuterium

Florian Hauenstein (Spokesperson),¹ William Phelps (Co-spokesperson),² Stepan Stepanyan (Co-spokesperson),³ Mohammad Hattawy,¹ Valery Kubarovsky,³ Daniel
Carman,³ Lawrence Weinstein,¹ Reynier Cruz-Torres,⁴ Efrain Segarra,⁴ Axel Schmidt,⁴
Yordanka Ilieva,⁵ Bryan McKinnon,⁶ Lei Guo,⁷ Raffaella de Vita,⁸ Andrea Celentano,⁸
Marco Battaglieri,⁸ Izzy Illari,² William Briscoe,² Igor Strakovsky,² Carlos Salgado,⁹
Kenneth Hicks,¹⁰ John Price,¹¹ Chan Kim,² Olga Cortez,² and Silvia Niccolai¹²

¹Old Dominion University, Norfolk, Virginia 23529

² The George Washington University, Washington D.C. 20052

³Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

⁴Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

⁵University of South Carolina, Columbia, South Carolina 29201 ⁶University of Glasgow, Glasgow G12 8QQ, UK

⁷Florida International University, Miami, Florida 33199

⁸Istituto Nazionale Fisica Nucleare sezione di Genova, 16146 Genova GE, Italy

⁹Norfolk State University, Norfolk, Virginia 23504

¹⁰University of Ohio, Athens, Ohio 45701

¹¹California State University Dominguez Hills, Carson, California 90747
¹²Institut de Physique Nuclaire d'Orsay, 91406 Orsay, France

Proton-Antiproton Resonances

- Resonances seen at DESY in $\gamma p \rightarrow p p \bar{p}$
- Narrow resonances in pion production experiments at the CERN Omega Spectrometer
- Results from BESIII show some enhancements but no narrow resonances
- Long and conflicting history of proton-antiproton resonant states!

Proton-Antiproton Resonances in CLAS6

Ambiguities in the final state from the two protons that would not exist on a deuteron/neutron
 This proposal would allow us to search for resonances with a much wider invariant mass range

Coherent Dihadron Production

Thesis: Yeranuhi Ghandilyan (2016)

Figure.P.tetionmaryiagsultofronotoegetionadysis

- Unexpected large cross section for proton-antiproton than pion or Kaon production at masses > 2GeV
- Diquark pair production? $(qq) \overline{q q}$
- Limited statistics at eg3: ~300 events
- Study invariant mass with higher statistics and larger invariant masses
- Learn about production mechanism

Proposal Request

Beam time	Remaining RGB (~69 PAC days)
Beam energy	11 GeV (at least > 10 GeV)
Beam current	≥ 50nA
Polarization	N/A
Trigger	2 particles in FD, opposite charge and sector
Setup	CLAS12 and FT (as Spring 2019)
Torus	Inbending

Trigger Condition: Opposite Sector and Charge in Forward Detector

- Proton and Antiproton predominantly in opposite sectors → Proposed trigger sufficient for this reaction
- Opposite Sector condition independent on invariant mass or photon energy

RGB Spring 2019, 50nA @ 10.5 GeV

Bit	Description	Raw (Hz)	Normalized (Hz/nA)	Norm. Limit (Hz/nA)	l Tot
0	Electron - OR of 1-6	5503	108.8	95.0	
1	Sector 1	871	17.2	13.0	С
2	Sector 2	922	18.2	13.0	Г
3	Sector 3	930	18.4	13.0	Г
4	Sector 4	965	19.1	13.0	Γ
5	Sector 5	950	18.8	13.0	С
6	Sector 6	881	17.4	13.0	Γ
7	Muon S1- S4+,EMAX	2167	42.8	35.5	
8	Muon S2- S5+,EMAX	1986	39.2	34.5	
9	Muon S3- S6+,EMAX	1945	38.4	32.3	
10	Muon S4- S1+,EMAX	2126	42.0	36.7	
11	Muon S5- S2+,EMAX	2054	40.6	34.8	
12	Muon S6- S3+,EMAX	1975	39.0	32.9	
13	Electron OR no DC	13422	265.3	200.0	
14	Muon S1- S4+	3478	68.7	60.2	Г
15	Muon S2- S5+	3390	67.0	60.0	С
16	Muon S3- S6+	3339	66.0	58.0	С
17	Muon S4- S1+	3428	67.8	60.0	Г
18	Muon S5- S2+	3595	71.1	60.0	С
19	Muon S6- S3+	3381	66.8	60.0	С
20	FTH(>.3)xFTOFUxCTOF	36860	728.5	700.0	Γ
21	FTH(.2-4)x[FTOFUxDC]^2	13001	257.0	240.0	Г
22	FT(>.5) 2 clusters	12358	244.3	200.0	Г
23	FT(.1-8)	2044000	40397.9	35000.0	Г
24		0	0.0	-1.0	Г

DAQ Rates

- J/ ψ Dimuon trigger (RGB):
 - Opposite sector
 - Opposite charge
 - EMAX cut in ECAL
 - ≈ 8 kHz rate
- Proposed Dihadron trigger
 - Opposite sector
 - Opposite charge
 - No EMAX cut
 - ≈ 12 kHz rate (50% increase)
- Electrons ≈ 6 kHz rate
- Total (proposal) ≈ 18 kHz rate
 < DAQ limit

Luminosity Estimates

- Luminosity for 69 PAC days
 - Electron beam: 50nA, 50% efficiency → 300mC
 - Target density 0.163 g/cm³, length 5cm \rightarrow 0.24 b⁻¹
 - Electron luminosity ≈ **450 fb**⁻¹
 - #Photons from bremsstrahlung ≈ 0.002 per electron (virtual photon flux 2-3x larger)
- Untagged photon luminosity ≈ 1 fb⁻¹
- Tagged photon luminosity ~ 100 pb⁻¹ (~factor 10 for FT acceptance)

Event Estimates: $\gamma n \rightarrow np\bar{p}$

> Cross section: $\sigma \approx 50$ nb (conservative estimate)

Acceptance and efficiency from GEMC for 3 particles: 1.6%

Event Estimates: $\gamma d \rightarrow dp \bar{p}$

Scaling from eg3 data (Thesis Yeranuhi Ghandilyan (2016))

- 15 pb⁻¹ luminosity
- 300 events with 12.5% acceptance and efficiency
- Acceptance and efficiency from GEMC for final state: 2%
- N_{untagged} and exclusive final state ≈ 3300 events (eg3 had 300 events)
- Coherent production in same mass range of
 - Pion pairs ≈ factor 2 lower
 - Kaon pairs ≈ factor 6 lower

Simulation Details

t-channel generator

- Bremsstrahlung spectrum: 6.5 10.5 GeV
- t-slope = $1.5 (GeV/c)^{-2}$
- ppbar decay as two-body phase space
- 400k events
- **GEMC 4.3.0**
- coatjava 5b.7.8

Generated MC: $\gamma d \rightarrow dp \bar{p}$

- Proton and Antiproton predominantly in Forward Detector
- Deuteron in FD and CD
- Misidentification of *p* and *d* in EB
 → Reconstructed values not shown

Generated MC: $\gamma n \rightarrow n p \bar{p}$

Reconstructed MC: $\gamma n \rightarrow np\bar{p}$

• PID is determined by charge of reconstructed track, neutral hit is assumed to be a neutron

Invariant Mass Coverage $\gamma n \rightarrow np\bar{p}$

Invariant Mass Resolution Study

> Simulation for $\gamma n \rightarrow n p \bar{p}$ with fixed $p \bar{p}$ mass

> Resolutions are suitable to study the narrow resonances

Summary

- Search for ppbar resonances without ambiguities
- Study of coherent production, x10 higher statistics
- Increase invariant mass coverage up to 3.5 GeV/c² (CLAS6 2.4GeV/c²)
- Only requires change of RGB muon trigger
 - General dihadron trigger
 - Increase rate by 4kHz; total rate 18kHz < DAQ limit</p>
- Compatible with other RGB experiments

Note: Trigger partially covers other channels i.e. $γn → K^+Σ^-$ or $γn → ρ^-p$

Backup

Cross Section W. Phelps Thesis

L3 Result

P. Achard et al., Phys.Lett. B 571, 11 (2003)

QUASI-REAL PHOTOPRODUCTION ON DEUTERIUM: F. HAUENSTEIN

Production Mechanism

M_{ppbar} versus t-distribution

QUASI-REAL PHOTOPRODUCTION ON DEUTERIUM: F. HAUENSTEIN