Probing the core of the strong nuclear interaction

Lawrence Weinstein Old Dominion University

- The Nuclear Challenge
- Correlated Nucleons (SRC)
- The Generalized Contact Formalism
- High-momentum tests of the NN interaction
- Summary

The Nuclear Challenge

1. Many-body problem

$$\sum_{i} \left\{ -\frac{\hbar^2}{2m_i} \nabla_i^2 \Psi(\vec{r}_1, \dots, \vec{r}_N, t) \right\} + U(\vec{r}_1, \dots, \vec{r}_N) \Psi(\vec{r}_1, \dots, \vec{r}_N, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \dots, \vec{r}_N, t)$$

2. Complex QCD interaction

The Nuclear Challenge

1. Many-body problem

➔ Quantum Monte Carlo

2. Complex QCD interaction

The Nuclear Challenge

- 1. Many-body problem
 - ➔ Quantum Monte Carlo

2. Complex QCD Effective interaction

The Nuclear Interaction

Many ways to derive the effective interaction.

- Chiral Effective Field Theory χEFT
- Pion exchange plus phenomenological short distance terms (AV18, etc)

All models contain effective parameters that need to be determined experimentally

Typically fit to *NN* scattering up to 350 MeV/c (pion threshold)

The Deuteron

Poorly constrained for p > 400 MeV/c

Where to test these models

NN systems at high relative momentum

- The deuteron
- Short range correlated NN pairs

L. Weinstein, CLAS 2019

Short Range Correlations (SRCs)

→ High momentum tails:

 $p > p_{\text{Fermi}}$ Calculable for $A \le 40$ and nuclear matter. Not well constrained at large p

Effects:

- High momentum part of the nuclear wave function
- Short distance behavior of nucleons modification??
- Cold dense nuclear matter
- Neutron Stars

Nucleons are like people ...

Correlations and High Momentum

Scaling (flat ratios) indicates a common momentum distribution. 1 < x < 1.5: dominated by different mean field n(k) 1.5 < x < 2: dominated by 2N SRC N. Fomin

 $x = Q^2 / 2mv$

N. Fomin et al, PRL **108**, 092502 (2012) B. Schmookler + CLAS, Nature **566**, 354 (2019)

$$\alpha_{2N} \approx 20\%$$

L. Weinstein, CLAS 2019

Scale separation

Long range / low momentum scale region

Nucleus dependent

Short distance / high momentum scale region

Nucleus independent

"Short Range Correlations"

What are correlations?

Average Two-Nucleon Properties in the Nuclear Ground State

Two-body currents are **not** Correlations (but add coherently)

Signatures for Correlations

An Experimentalist's Definition:

- A high momentum nucleon whose momentum is balanced by **one** other nucleon
 - *NN* Pair with
 - Large Relative Momentum
 - Smaller Total Momentum

Select experimental kinematics to minimize effect of other reaction mechanisms and emphasize SRC

High momentum protons have neutron partners

There are \sim 20 times more np-SRC than pp-SRC pairs in nuclei.

Why?

pp pairs are spin-0 and must be s-wave

• the *s*-wave minimum at $p_{rel} \approx 400 \text{ MeV/c}$

The *np* minimum is filled in by strong tensor (*l*=2) correlations

Gent workshop, Aug. 2007

Sargsian, Abrahamyan, Strikman, Frankfurt PRC **71**, 044615 (2005).

Higher momentum protons? ⁴He(e,e'pN)

- pp/np ratio increases with missing momentum
- Central correlations?

SRC Summary

- Almost all high momentum nucleons (p > 300 MeV/c) in nuclei belong to an NN correlated pair
 - -20% of all nucleons for $A \ge 12$
 - Dominated by *pn* pairs, even in heavy asymmetric nuclei
 - Higher probability for minority to be at high *p*
 - Momentum distributions proportional to deuterium
 - Scale separation between high-momentum/short-distance phenomena and low-momentum/longer-distance

Next: use the scale separation to describe SRC in nuclei

Can SRC data probe ab-initio Calculations?

- Measure one- and two-nucleon knockout cross-sections.
- Compare with many-body calculations using different NN interactions.
- See which one works best

What's needed?

• Ab-initio cross-section calculations

• Data

What's needed?

• Ab-initio cross-section calculations => Plane-wave \w spectral fns from NN interaction • Data $\frac{d^4\sigma}{d\Omega_{k'}d\epsilon'_k d\Omega_{p'_1}d\epsilon'_1} = p'_1\epsilon'_1\sigma_{eN}S^N(\boldsymbol{p}_1,\epsilon_1)$

What's needed?

- Ab-initio cross-section calculations
 => Plane-wave \w spectral fns from NN interaction
- Data in kinematics where plane-wave works

What's needed?

- Ab-initio cross-section calculations
 => Plane-wave \w spectral fns from NN interaction
- Data in kinematics where plane-wave works

Quantum MC: small-r / high-k is all pairs!

Cruz Torres and Lonardoni et al. (2019)

GCF Factorization

Weiss et al., Phys. Lett. B (2018); Cruz Torres et al., Phys. Lett B (2018); Weiss et al., Phys. Lett B (2019); Cruz Torres and Lonardoni et al. (2019).

Quantum MC: small-r / high-k is all pairs!

Pairs Momentum Distribution (q)

Cruz Torres and Lonardoni et al. (2019)

Weiss et al., Phys. Lett. B (2018); Cruz Torres et al., Phys. Lett B (2018); Weiss et al., Phys. Lett B (2019); Cruz Torres and Lonardoni et al. (2019).

$$\rho_{A}^{NN,\alpha}(r) = \begin{bmatrix} C_{A}^{NN,\alpha} \\ \phi_{A}^{\alpha}(r) \end{bmatrix} = \begin{bmatrix} C_{A}^{NN,\alpha} \\ C_{A}^{NN,\alpha}(r) \end{bmatrix}^{2} \xrightarrow{Vio(12 \text{ im})}_{i=0}^{i=0} \\ i = 0 \\ i$$

P-A-I-R-S

GCF: Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn, s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{np, s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp, s=0} \cdot S_{pp}^{s=0}(p,\varepsilon)$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

GCF: Pairs Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{np,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$S_{ab}^{\alpha} = \frac{1}{4\pi} \int \frac{d\mathbf{p}_2}{(2\pi)^3} \delta(f(\mathbf{p}_2)) \left| \tilde{\varphi}_{ab}^{\alpha}(|(\mathbf{p}_1 - \mathbf{p}_2)/2|) \right|^2 n_{ab}^{\alpha}(\mathbf{p}_1 + \mathbf{p}_2)$$

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

GCF: Pair Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{np,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$S_{ab}^{\alpha} = \frac{1}{4\pi} \int \frac{d\boldsymbol{p}_2}{(2\pi)^3} \delta(f(\boldsymbol{p}_2)) \left\| \tilde{\varphi}_{ab}^{\alpha}(|(\boldsymbol{p}_1 - \boldsymbol{p}_2)/2|) \right\|^2 n_{ab}^{\alpha}(\boldsymbol{p}_1 + \boldsymbol{p}_2)$$

Relative (q) c.m.

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019).

GCF: Pair Spectral Functions

$$S^{p}(p,\varepsilon) = C_{A}^{pn,s=1} \cdot S_{pn}^{s=1}(p,\varepsilon) + C_{A}^{np,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon) + 2C_{A}^{pp,s=0} \cdot S_{pn}^{s=0}(p,\varepsilon)$$

Each pair is convoluted with c.m. motion:

$$S_{ab}^{\alpha} = \frac{1}{4\pi} \int \frac{d\boldsymbol{p}_2}{(2\pi)^3} \delta(f(\boldsymbol{p}_2)) \left\| \tilde{\varphi}_{ab}^{\alpha}(|(\boldsymbol{p}_1 - \boldsymbol{p}_2)/2|) \right\|_{\boldsymbol{\gamma}}^2 \frac{n_{ab}^{\alpha}(\boldsymbol{p}_1 + \boldsymbol{p}_2)}{\boldsymbol{\gamma}} \right\|$$

AV18 / N2LO / ... Measured
Available for Carbon

Weiss, Phys. Lett. B (2018); Cruz-Torres, Phys. Lett B (2018); Weiss, Phys. Lett B (2019).

What's needed?

- ✓ Plane-wave \w spectral fns from *NN* interaction
- Data in kinematics where plane-wave works

The Data

2004 5.016 GeV EG2 data

- d, C, Al, Fe, Pb targets
- $Q^2 > 1.5 \text{ GeV}^2$
- $x_{\rm B} > 1.2$
- Leading proton:
 - $heta_{pq} < 25^\circ$,
 - $\frac{p_N}{q} > 0.6$,
 - $400 \le p_{miss} \le 1000 \text{ MeV/c}$
- Recoil proton:
 - $p_R > 350 \text{ MeV/c}$

Identical data used in

- O. Hen (CLAS), Science 346, 614 (2014)
- M. Duer (CLAS), Nature **560**, 617 (2018)
- E. Cohen (CLAS), PRL **121**, 092501 (2018)
- M. Duer (CLAS), PRL **122**, 172502 (2019)

Two-Nucleon Knockout (Plane Wave)

SRC

Two-Nucleon Knockout (not Plane Wave)

Two-Nucleon Knockout (not Plane Wave)

MEC suppressed (a) high- Q^2 , IC suppressed at $x_B > 1$.

Frankfurt, Sargsian, and Strikman PRC **56**, 1124 (1997). Colle, Cosyn, and Ryckebusch, PRC **93**, 034608 (2016).

Two-Nucleon Knockout (not Plane Wave)

MEC suppressed @ high-Q², IC suppressed at $x_B > 1$.

FSI suppressed in **antiparallel** kinematics. Treated using **Glauber** approximation.

Frankfurt, Sargsian, and Strikman PRC **56**, 1124 (1997). Colle, Cosyn, and Ryckebusch, PRC **93**, 034608 (2016).

FSI: Theory Guidance

For large Q², x>1

Pair rescattering:
 Minimize by choosing correct kinematics

M. Sargsian; Boeglin PRL (2011).

Attenuation: Glauber

Hen et al., Phys. Lett. B 722, 63 (2013)

Attenuation: Glauber

What's needed?

✓ Plain-wave \w spectral fns from NN interaction

 \checkmark Data in kinematics where plane-wave works

Usually correct data for detector acceptance and reaction mechanism effects and then compare to theory.

Corrected data is model dependent.

We instead will correct the theory.

- Generate PWIA A(e,e'NN) events.
- Run through detector simulation.
- Weigh by GCF cross-sections + reaction effects (transparency & single charge exchange)
- Apply event selection cuts & overlay on data.

 120°

 100°

 80°

 60°

40°

 20°

0°

θ

- Generate PWIA A(e,e'NN) events.
- Run through detector simulation.
- Weigh by GCF cross-sections + reaction effects (transparency & single charge exchange)
- Apply event selection cuts & overlay on data.

Single particle acceptance maps and resolution smearing

 150°

ф

 200°

 250°

 300°

100°

 50°

0.8

0.6 acceptance 0.0 Acceptance

0.2

- Generate PWIA A(e,e'NN) events.
- Run through detector simulation.
- Weigh by GCF cross-sections + reaction effects (transparency & single charge exchange)
- Apply event selection cuts & overlay on data.

$$\frac{d^4\sigma}{d\Omega_{k'}d\epsilon'_k d\Omega_{p'_1}d\epsilon'_1} = p'_1\epsilon'_1\sigma_{eN}S^N(\boldsymbol{p}_1,\epsilon_1)$$

- Generate PWIA A(e,e'NN) events.
- Run through detector simulation.
- Weigh by GCF cross-sections + reaction effects (transparency & single charge exchange)
- Apply event selection cuts & overlay on data.

No evidence of FSI enhancements

GCF Spectral Function Works!

Summary

Nuclear momentum distribution has two distinct regions

Scale separation

Describe the high momentum region with the Generalized Contact Formalism

- GCF describes (e,e'p) and (e,e'pp) data remarkably well up to 1000 MeV/c
- transition from tensor to scalar part of NN interaction
- Tests of NN interactions

Paper approved for CLAS Review 6/20

See Axel Schmidt's NPPWG talk for more details