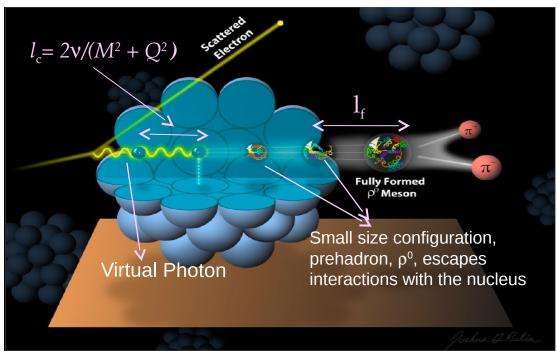
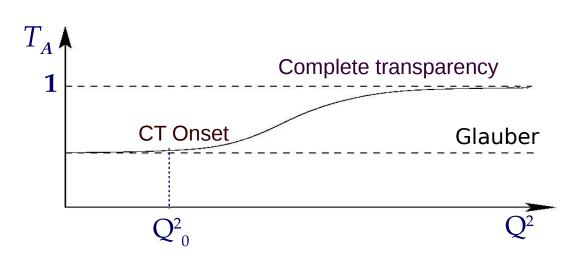
RG-D Readiness Status

CLAS Collaboration Meeting June 19th, 2019

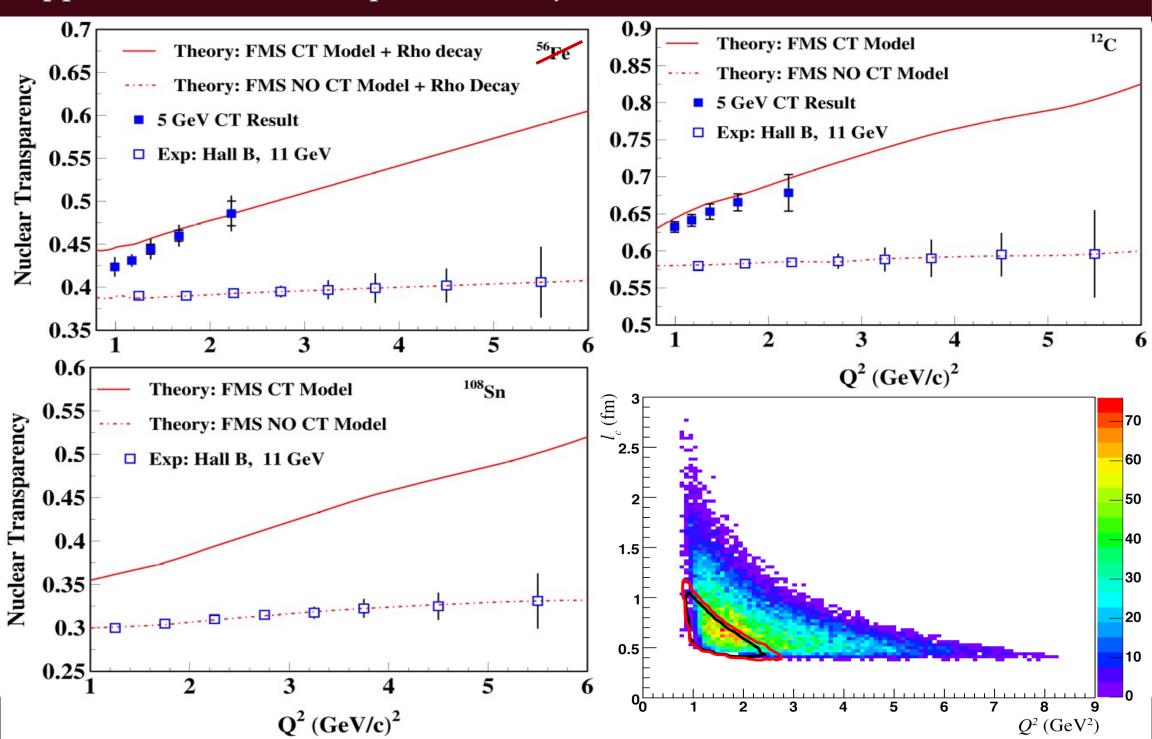

Lamiaa El Fassi (for the RG-D Co-spokespersons)

RG-D Experiment

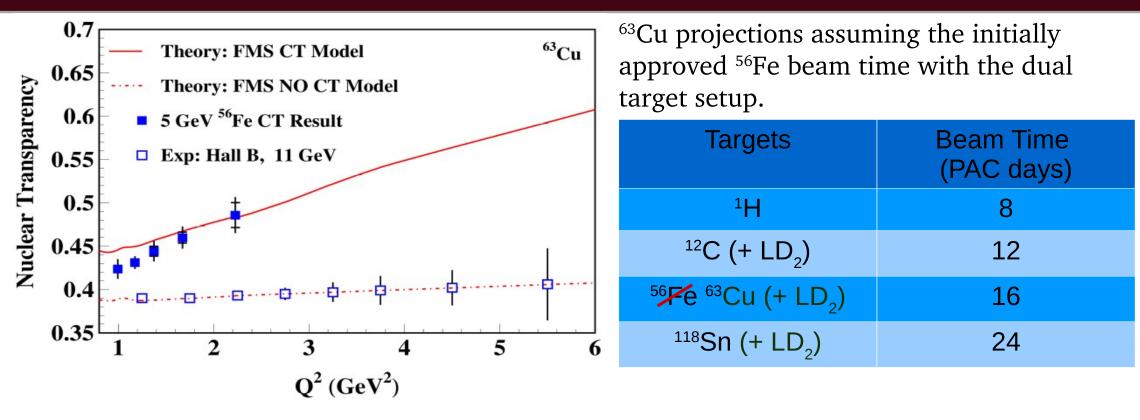
• <u>E12-06-106</u>, "Study of Color Transparency in Exclusive Vector Meson Electro-production off Nuclei", approved with 60 PAC days.



- Coherence length, l_c , is the lifetime of the **qq-bar** pair.
- Formation time, l_f , is the lifetime of the small size configuration before evolving to a full ρ^0 meson.

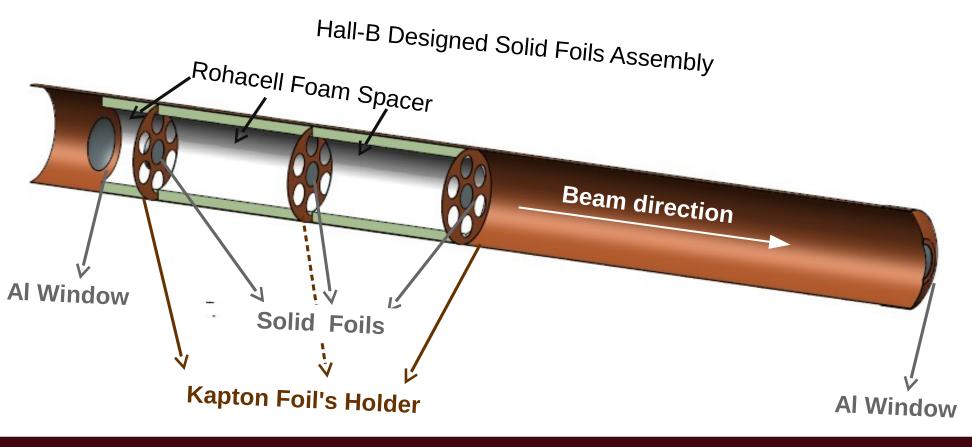

The CT signature is the increase of the medium "nuclear" transparency, T_A , as a function of the four-momentum transfer squared, Q^2 .

$$\Gamma_A = \frac{\sigma_A}{A \sigma_N}$$


 $\sigma_{_{\!\!A}}$ is the nuclear cross section $\sigma_{_{\!\!N}}$ is the free (nucleon) cross section

Approved 11 GeV CT Experiment Projections

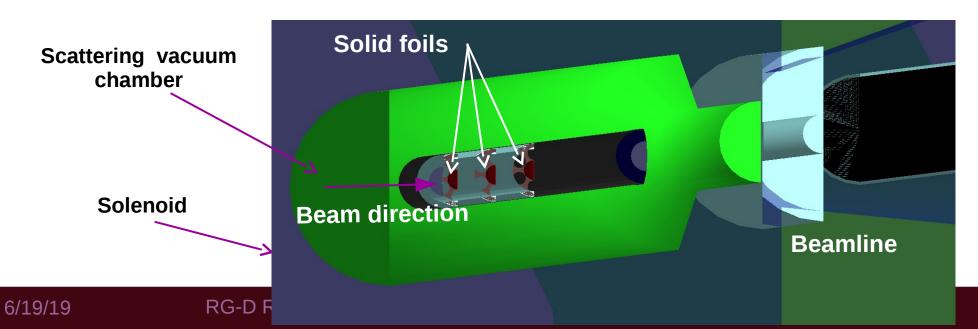
Approved 11 GeV CT Experiment Projections

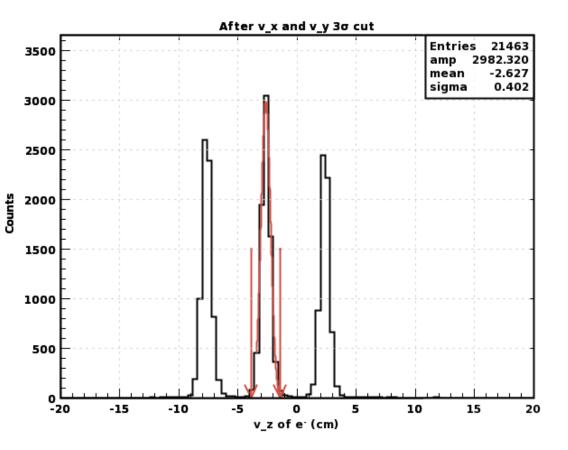


 Expected statistical uncertainties for the approved beam time and one coherence length bin (0.4 – 0.5 fm):

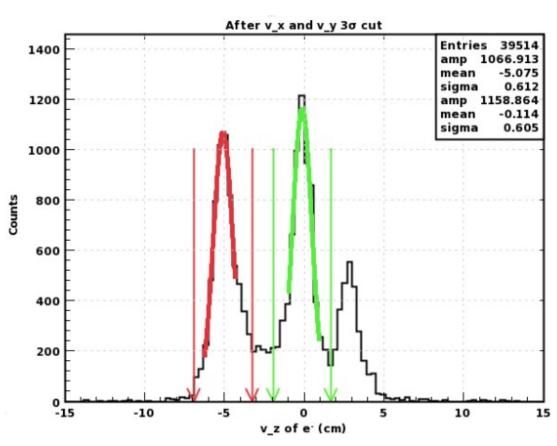
Q ² (GeV ²)	1.25	1.75	2.25	2.75	3.25	3.75	4.5	5.5
/	±	±	±	±	±	±	±	±
Targets	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5
¹² C (%)	0.6	0.5	0.8	1.2	2	3	3.5	7
⁶³ Cu (%)	0.6	0.5	0.8	1.2	2	3.2	3.6	7.4
¹¹⁸ Sn (%)	0.6	0.5	0.6	1	1.6	2.4	3.4	6.9
6/19/19 RG-D Readiness Status						Lamiaa Ei	Fassi	4

Running Conditions: Updated Target Configuration


- Alternating the liquid deuterium (LD2) target with a set of three solid targets 5 cm apart:
 - ✓ Design already exists,
 - ✓ 5 cm guarantees a good vertex separation,
 - Solid foils are glued to a kapton disk, then to a foam cylinder, and mounted inside a 20 mm diameter Kapton cell (similar to the liquid target cell),
 - ✓ The cell will be purged with cold helium to dissipate heat from the beam interaction.



Running Conditions: Beam & Target Configuration


• Run with 11 GeV beam energy, different beam current to achieve the expected luminosity of 10³⁵ cm⁻²s⁻¹.

Targets	Thickness (3 foils) (cm)	Density (g.cm ⁻³)	Areal Density (mg.cm ⁻²)	Radiation Lengths (T/X ₀)	Beam Current (nA)	Per-Nucleon Luminosity (cm ⁻² s ⁻¹)
D2	5	0.164	820	0.0065	35	10 ³⁵
¹² C	0.172 (0.516)	1.747	300	0.007	30	10 ³⁵
⁶³ Cu / ¹¹⁸ Sn / ¹¹⁸ Sn	0.036 / 0.03 / 0.03	8.96 / 7.31 / 7.31	322.56 / 219.3 / 219.3	0.025 / 0.025 / 0.025	35	10 ³⁵

Simulated Electron z-vertex distribution for the Hall-B 5 cm apart solid foils assembly

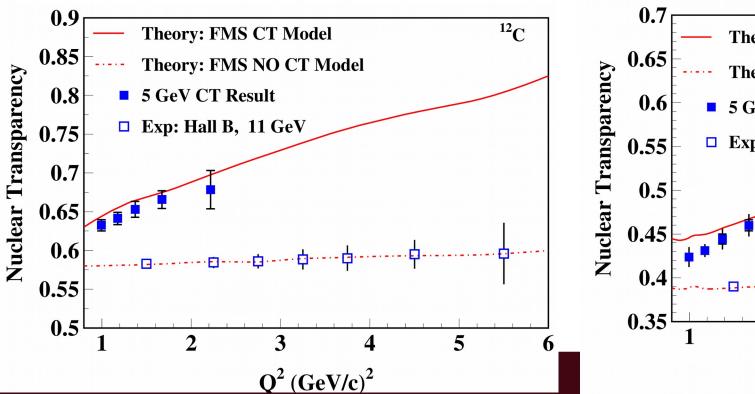
Electron z-vertex distribution from a newly calibrated, aligned and reconstructed empty target RG-A run

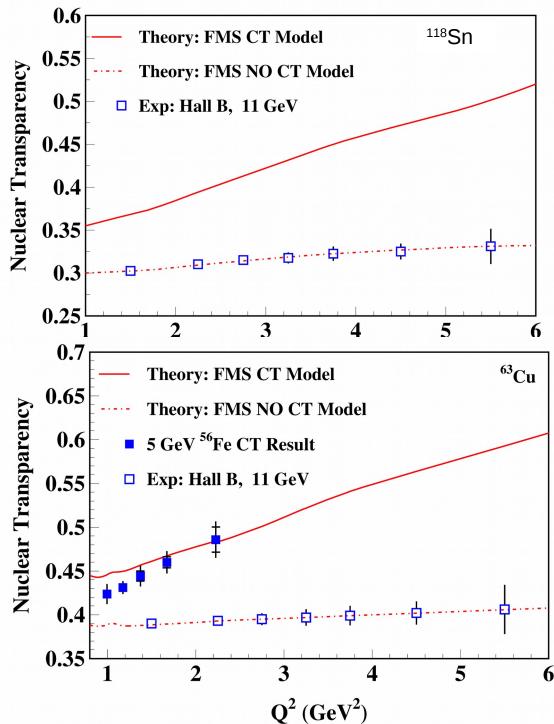
Updated Run Plan & Projections

• Adjust a run plan to dedicate beam time for the separate cryo-target and solid targets run:

Targets/Plan	Beam Time (PAC days)
¹² C / ¹² C / ¹² C	10
LD ₂	10
⁶³ Cu / ¹¹⁸ Sn / ¹¹⁸ Sn	36
LH ₂	4

• Adjust a run plan to dedicate beam time for the separate cryo-target and solid targets run:


Targets/Plan	Beam Time (PAC days)
¹² C / ¹² C / ¹² C	10
LD ₂	10
⁶³ Cu / ¹¹⁸ Sn / ¹¹⁸ Sn	36
LH ₂	4


• Expected statistical precision for the new run plan and one coherence length bin (0.4–0.5 fm):

Q ² (GeV ²) / Targets	1.5 ± 0.5	2.25 ± 0.25	2.75 ± 0.25	3.25 ± 0.25	3.75 ± 0.25	4.5 ± 0.5	5.5 ± 0.5
¹² C (%)	0.9	1.2	1.6	2.2	2.8	3.1	6.7
⁶³ Cu (%)	1.1	1.4	1.7	2.4	2.9	3.4	7.2
¹¹⁸ Sn (%)	0.9	1.1	1.5	2.1	2.7	3.0	6.4

Updated Run Plan & Projections

Targets/Plan	Beam Time (PAC days)
¹² C / ¹² C / ¹² C	10
LD ₂	10
⁶³ Cu / ¹¹⁸ Sn / ¹¹⁸ Sn	36
LH ₂	4

• Adjust a run plan to dedicate beam time for the separate cryo-target and solid targets run:

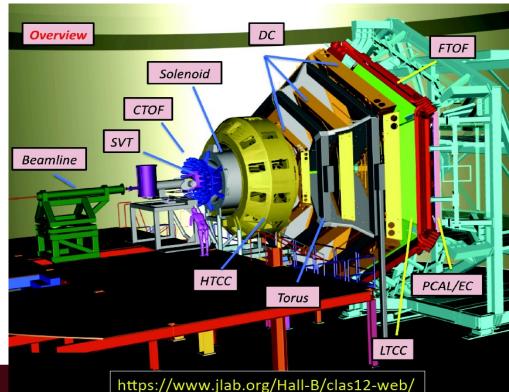
Targets/Plan	Beam Time (PAC days)
¹² C / ¹² C / ¹² C	10
LD ₂	10
⁶³ Cu / ¹¹⁸ Sn / ¹¹⁸ Sn	36
LH ₂	4

- With this configuration, we need:
 - 4 calendar days for commissioning,
 - > 4 calendar days for target configuration change:
 - ✓ 28h to switch for solid to liquid target,
 - ✓ 48h to switch from liquid to solid targets assembly,
 - ✓ 24h to switch from one set of solid foils to an other.

Running Conditions: Target Configuration Change

- To change from solid targets assembly to LD2 (info from B. Miller):
 - 2 hours to decable target so target can be moved upstream far enough to remove scattering chamber.
 - ▶ 4 hours to change target cell, fill cell with N2 and leak check.
 - ➤ 4 hours to align cell and install scattering chamber.
 - > 2 hours to reconnect cabling and establish beam line.
 - 12 hours to pump down vacuum in target vacuum vessel and fill the target cell with helium.
 - ➤ 4 hours to cool and fill the liquid target.
 - ≻ Total: **28 h**.
- To change from LD2 to solid targets assembly (info from B. Miller):
 - 24 hours to empty target and heat cryostat so vacuum vessel can be opened to change target. In parallel, bleed up beam line vacuum, remove beam pipe to move target upstream.
 - 2 hours to decable target so target can be moved upstream far enough to remove scattering chamber.
 - ▶ 4 hours to change target cell, fill cell with N2 and leak check.
 - ▹ 4 hours to align cell and install scattering chamber.
 - > 2 hours to reconnect cabling and establish beam line.
 - > 12 hours to pump down vacuum in target vacuum vessel and fill the target cell with helium.
 - ≻ Total: **48 h**.

Running Conditions: Target Configuration Change

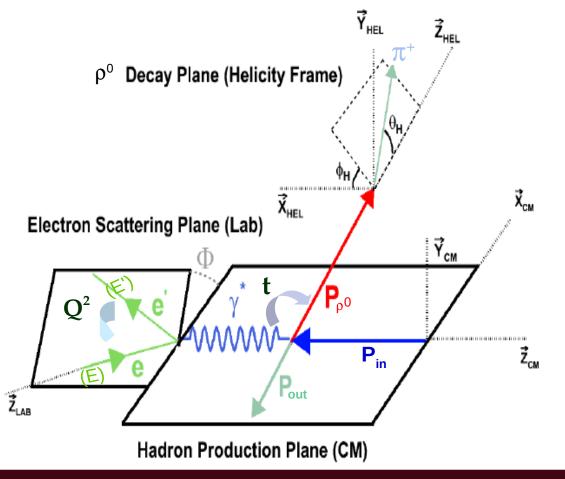

- To change a set of solid targets to an other (info from B. Miller):
 - 2 hours to decable target so target can be moved upstream far enough to remove scattering chamber.
 - > 4 hours to change target cell, fill cell with N2 and leak check.
 - ➤ 4 hours to align cell and install scattering chamber.
 - > 2 hours to reconnect cabling and establish beam line.
 - > 12 hours to pump down vacuum in target vacuum vessel and fill the target cell with helium.
 - ≻ Total: **24 h**.
- The Hall-B solid target assembly has been developed and the final design was done by the end of March. Parts were fabricated in April/May and the cells will be pressure tested in July (B. Miller).

Running Conditions: Magnet & Detector Setup

- Run with the default magnet's setting: inbending/upstream torus/solenoid field,
 - No big impact of different torus field polarity and magnitudes especially on the acceptance of the lowest Q² bin, 1 - 1.5 GeV², as initially proposed. This bin is merged with the subsequent one.

Running Conditions: Magnet & Detector Setup

- Run with the default magnet's setting: inbending/upstream torus/solenoid field,
 - No big impact of different torus field polarity and magnitudes especially on the acceptance of the lowest Q² bin, 1 - 1.5 GeV², as initially proposed. This bin is merged with the subsequent one.
- Will use the CLAS12 in its standard configuration but with
 - FT-OFF because
 - \checkmark the interest to a high-Q² region,
 - \checkmark no interest to detect photons at small angles (2.5°- 4.5°),
 - Extended beamline vacuum reduces DC R1 background, hence improves the FD efficiency.
 - FMT-Out unless its light version that is currently made for the BONUS experiment is fully functional.

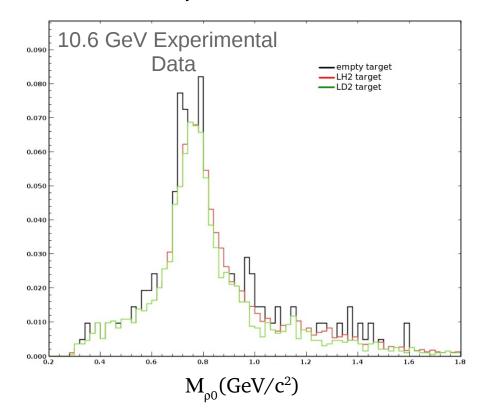


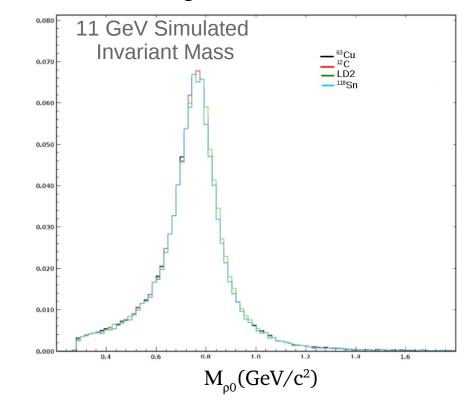
First Look to Negative Polarity Data

• The reconstructed ρ^0 invariant mass distribution in our kinematics range.

ρ^0 Electro-production Kinematics

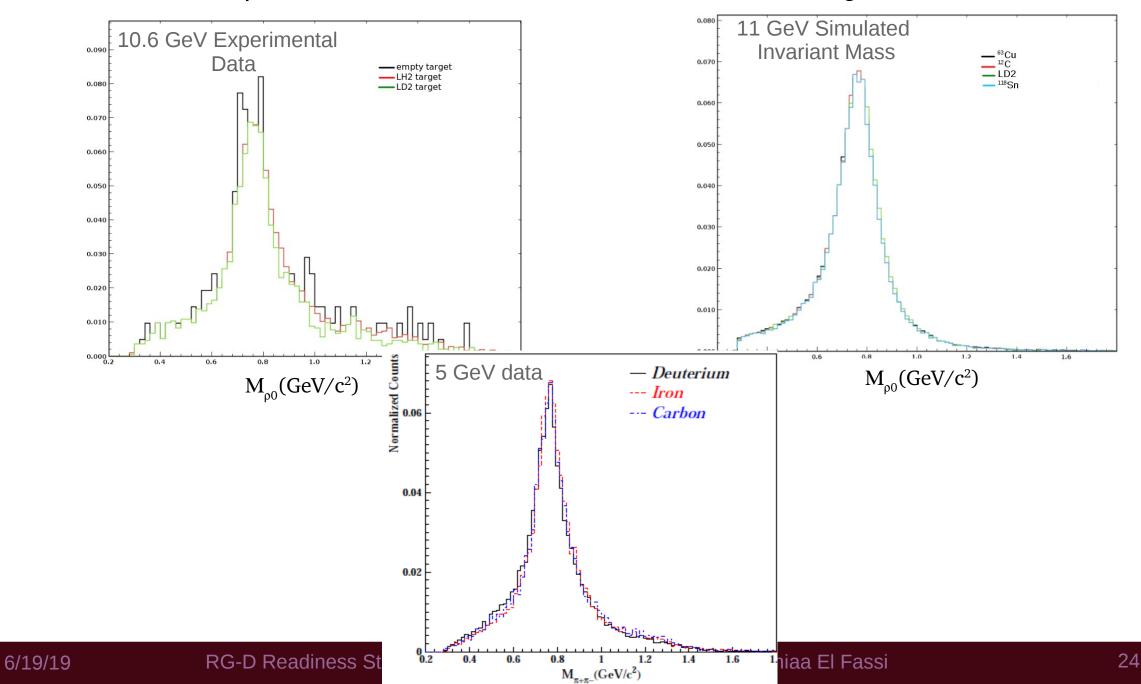
v = E − E': virtual photon (γ*) energy in the Lab frame, *Q*² = -(P^µ_e - P^µ_{e'})² = 4 E E'sin²(θ/2): photon virtuality, *t* = (P^µ_{γ*} - P^µ_ρ)²: momentum transfer square, *W*² = (P^µ_{in} + P^µ_{γ*})² = -Q² + M²_p + 2M_pv: invariant mass squared in (γ*, p) center of mass (CM).

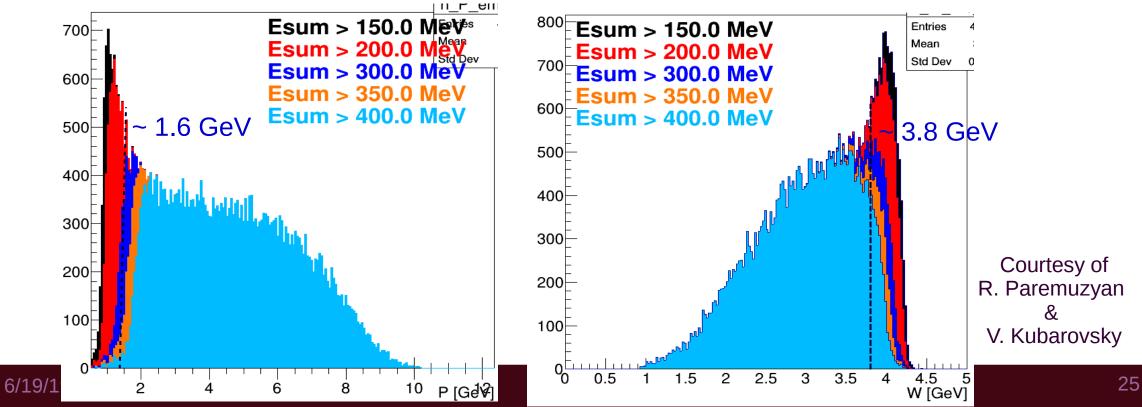

• $W \ge 2 \text{ GeV}$ \Rightarrow avoid resonance region


• $-t > 0.1 \text{ GeV}^2$ \Rightarrow exclude coherent production

• $Z_h = E_h / v \ge 0.9$ \Rightarrow select elastic channel

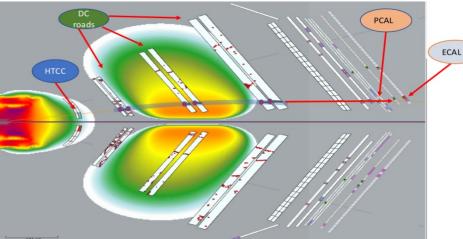
First Look to Negative Polarity Data


• The reconstructed ρ^0 invariant mass distribution in our kinematics range.

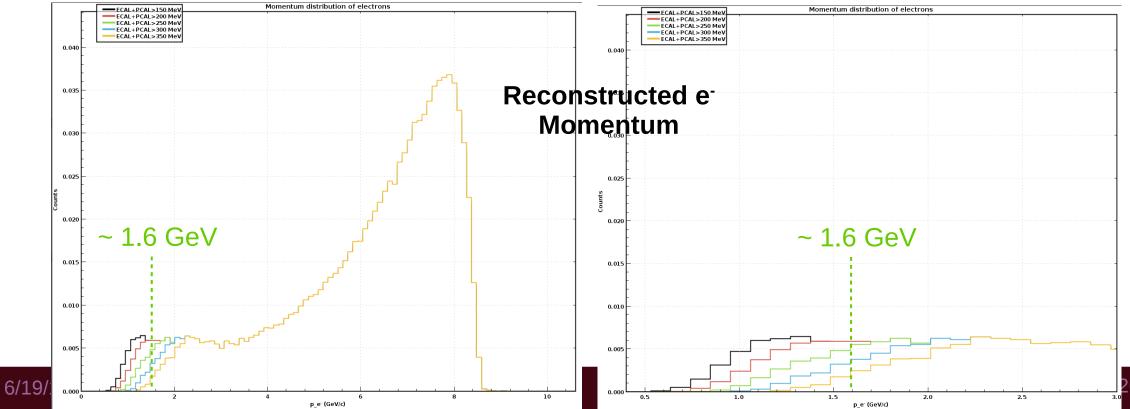


First Look to Negative Polarity Data

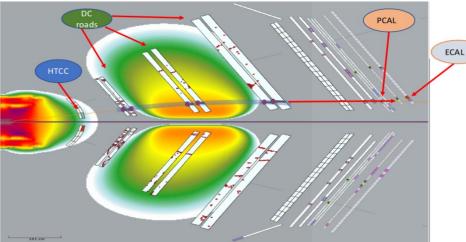
• The reconstructed ρ^0 invariant mass distribution in our kinematics range.



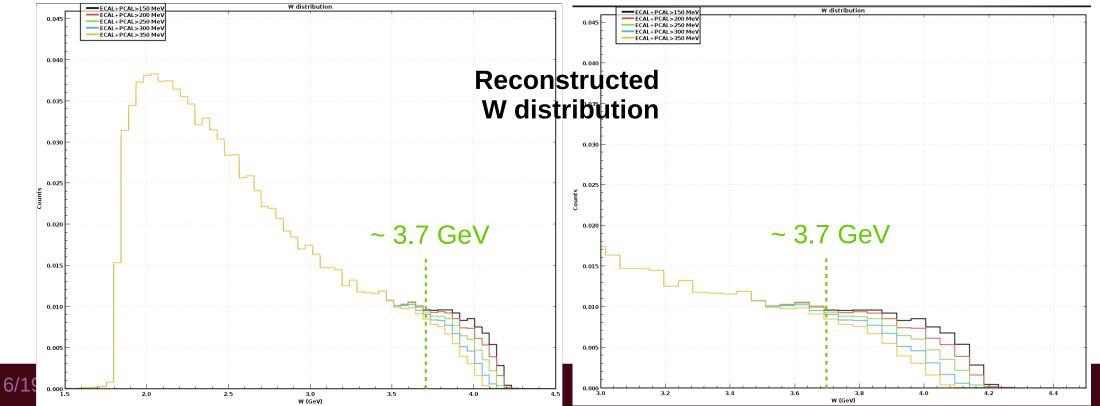
- Use the RG-A/B electron trigger:
 - ✓ Minimum number of HTCC photoelectrons >2
 - ✓ Minimum PCAL cluster energy > 60 MeV
 - Sum of the energy deposition in PCAL & ECAL greater than 250 - 300 MeV.
 - ✓ DC segments 5 out of 6
 - Negative DC roads matching the PCALU cluster
- The main trigger parameter is $E_{sum} = E_{PCAL} + E_{ECAL}$ because it controls the trigger rates (expecting ~ 8 kHz which is below the DAQ limit).
- This threshold affects the scattered electron momentum and kinematics, mainly W!



ECAL


- Use the RG-A/B electron trigger:
 - ✓ Minimum number of HTCC photoelectrons >2
 - ✓ Minimum PCAL cluster energy > 60 MeV
 - Sum of the energy deposition in PCAL & ECAL greater than 250 MeV.
 - ✓ DC segments 5 out of 6
 - Negative DC roads matching the PCALU cluster
- The main trigger parameter is $E_{sum} = E_{PCAL} + E_{ECAL}$ because it controls the trigger rates (expecting ~

- because it controls the trigger rates (expecting \sim 8 kHz which is below the DAQ limit).
- This threshold affects the scattered electron momentum and kinematics, mainly W!



- Use the RG-A/B electron trigger:
 - ✓ Minimum number of HTCC photoelectrons >2
 - ✓ Minimum PCAL cluster energy > 60 MeV
 - Sum of the energy deposition in PCAL & ECAL greater than 250 MeV.
 - ✓ DC segments 5 out of 6
 - Negative DC roads matching the PCALU cluster
- The main trigger parameter is $E_{sum} = E_{PCAL} + E_{ECAL}$ because it controls the trigger rates (expecting ~

27

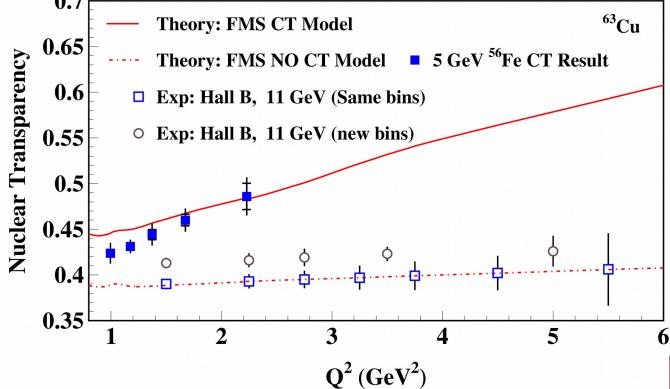
- because it controls the trigger rates (expecting \sim 8 kHz which is below the DAQ limit).
- This threshold affects the scattered electron momentum and kinematics, mainly W!

Running Conditions: Lower Beam Energy

• A lower beam energy, say 10.2 GeV, will reduce the highest Q² bin statistics by roughly 30% based on simulation.

Running Conditions: Lower Beam Energy

• A lower beam energy, say 10.2 GeV, will reduce the highest Q² bin statistics by roughly 30% based on simulation.


Q²(GeV²) / Targets	1.5 ± 0.5	2.25 ± 0.25	2.75 ± 0.25	3.25 ± 0.25	3.75 ± 0.25	4.5 ± 0.5	5.5 ± 0.5
⁶³ Cu (%) (11 GeV bins)	1.1	1.5	1.8	2.5	3.0	3.5	8.7
⁶³ Cu (%) (10.2 GeV new bins)	1.1	1.5	1.8	2.5	3.0		5 ± 1 .4
	0.7 0.65 0.6 0.6 0.55 0.55 0.45 0.45 0.45	Theory: Theory: Exp: Ha Exp: Ha Exp: Ha	: FMS CT Model : FMS NO CT Mo all B, 10.2 GeV (1 all B, 10.2 GeV (n 1 2 3	1 GeV bins)	⁶³ Cu Fe CT Result	6	
6/19/19			Q^2	(GeV ²)			29

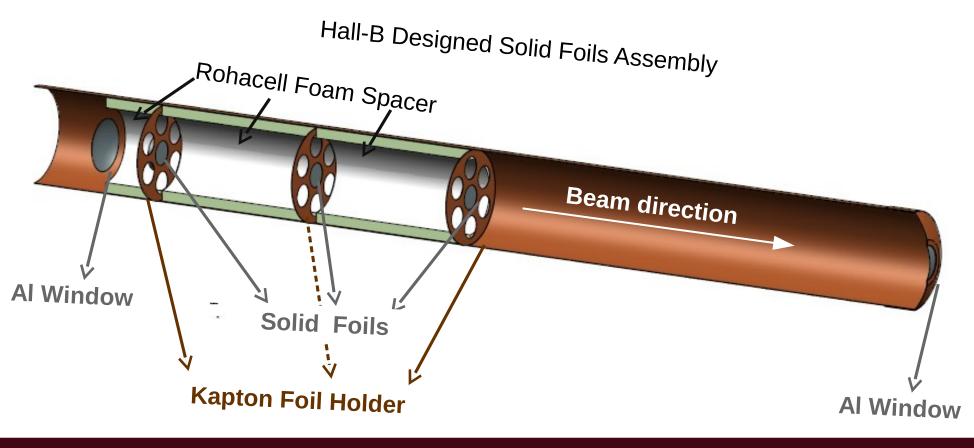
- ✓ If scheduled to run with ½ approved beam time we can still have publishable results by either
 - Dropping one nuclear target, or
 - ✓ Re-binning our nuclear transparency Q² dependence range.

• If scheduled to run with $\frac{1}{2}$ approved beam time we can still have publishable results by either

- Dropping one nuclear target, or
- ✓ Re-binning our nuclear transparency Q² dependence range.

Q²(GeV²) / Targets	1.5 ± 0.5	2.25 ± 0.25	2.75 ± 0.25	3.25 ± 0.25	3.75 ± 0.25	4.5 ± 0.5	5.5 ± 0.5
⁶³ Cu (%) (Same bins)	1.5	2.0	2.5	3.4	4.1	4.8	10.1
⁶³ Cu (%) (new bins)	1.5	2.0	2.5	Q ² : 3. 2.		Q ² : 5	
0.7							+

Running Conditions: Background & Radiation

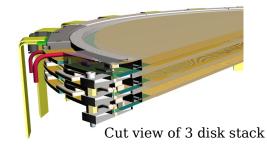

- According to experts, no X-ray radiation damage due to the 50 um tungsten wrapped around the scattering chamber which shields detectors from low γ rays.
- In coordination with the collaboration experts, several avenues can be explored to understand the neutron damage to the SVT:
 - i. Detailed simulation driven studies dose estimates,
 - ii. Simulation validation from recent data to improve rate estimates, and
 - iii. Monitoring the dark current increases over different run periods to check the degraded performance of SVT.

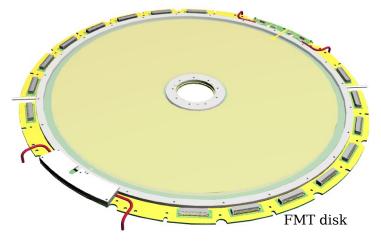
- According to experts, no X-ray radiation damage due to the 50 um tungsten wrapped around the scattering chamber and shielding detectors from low γ rays.
- In coordination with the collaboration experts, several avenues can be explored to understand the neutron damage to the SVT:
 - i. Detailed simulation driven studies dose estimates,
 - ii. Simulation validation from recent data to improve dose estimates, and
 - iii. Monitoring the dark current increases over different run periods to check the degraded performance of SVT.
- Lorenzo will perform simulation and activation studies for the simple target configuration which would help at understanding which configuration could go first and which last.

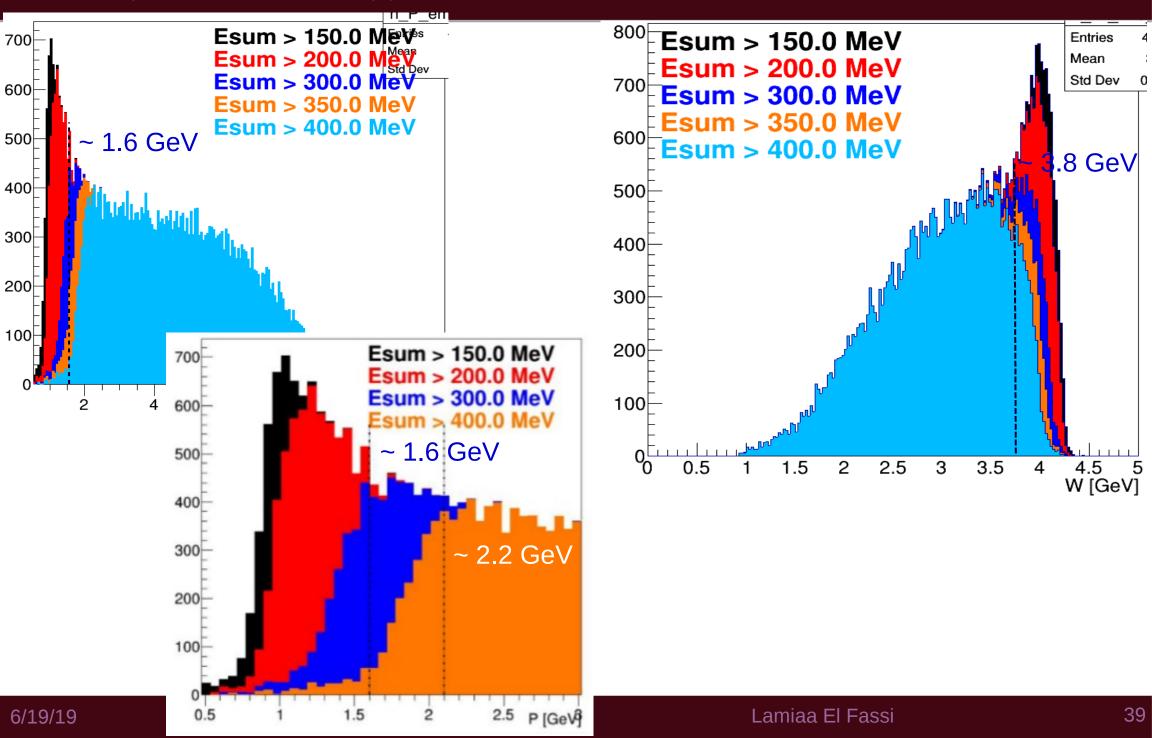
Hall-B Target Assembly Advantage

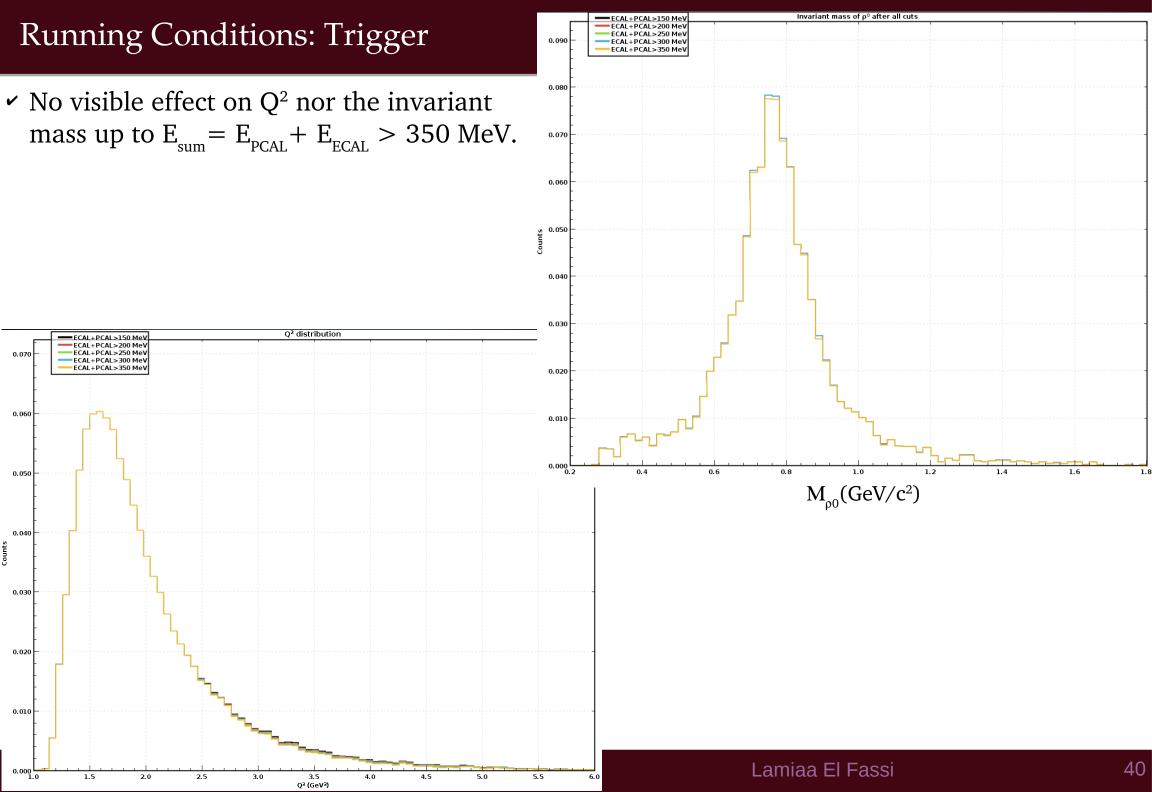
- Take liquid and solid targets data in similar vertex position which will minimize the acceptance correction,
- Reduce the amount of collected deuterium data as one set can be used with all nuclear targets to extract the physics results,
- Can accommodate several thinner solid targets, allowing to take full luminosity even on heavy targets.

- Will use the CLAS12 in its standard configuration but with
 - FT-OFF because
 - $\checkmark\,$ the interest to a high-Q² region,
 - $\checkmark\,$ no interest to detect photons at small angles (2.5°- 4.5°),
 - \checkmark to reach the highest luminosity possible of 2 10³⁵ cm⁻²s⁻¹.
 - FMT-Out since the forward detector resolution is good enough for the 5 cm target separation.
 - But, if the light version that Saclay is currently making for the BONUS experiment is fully functional before the run, then we can use the FMT.
 - The light FMT version:

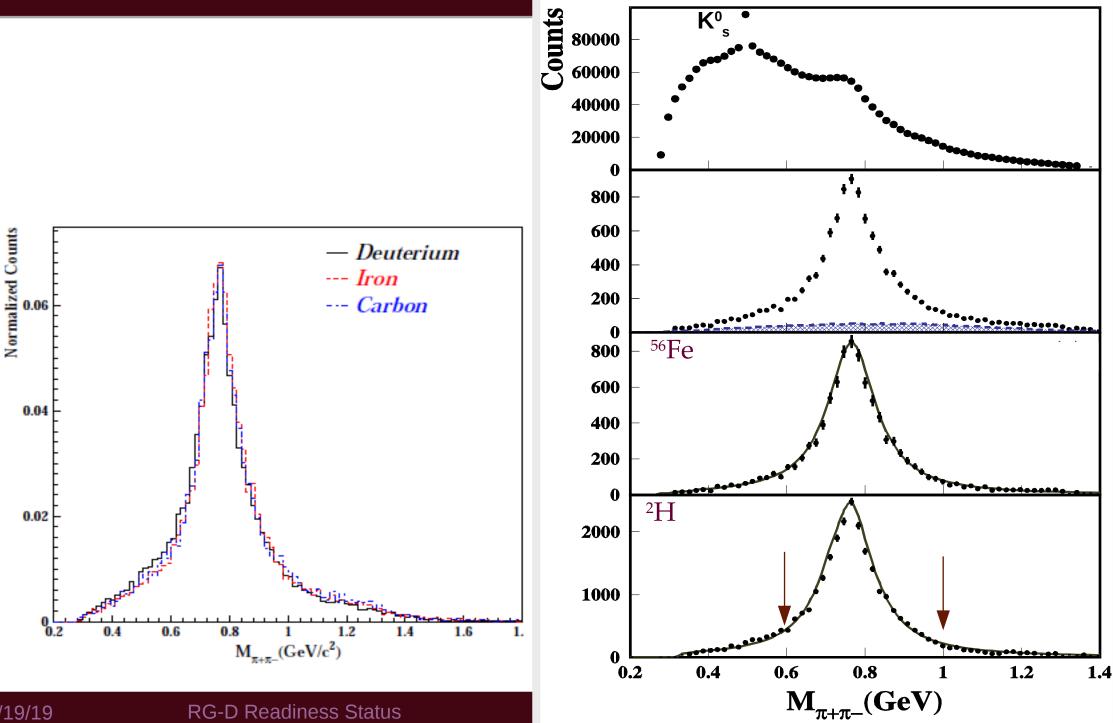

Metal screw replaced by nylon, plastic fixation, 3D print HV cover Aluminum (RL 8.9 cm) fixation between disk replaced by Peek (RL 31.9 cm)


Preliminary schedule


6/19/19


06/2019: drawing and material study 09/2019: Change and test disk 1 12/2019: upgrade disk 2-3 06/2020: upgrade disk 4 to 7

Volker, CLAS Collaboration Meeting, March 2019.



Two pions invariant mass

6/19/19