Magnetic field maps and forward tracker alignment

CLAS Collab. Meeting - June, 2019

Mac Mestayer

Forward Track Resolution: Status

Project	Method	Project Status / Results	Who*
Measure torus B-field → improve model (original disagreements of ~ 2 – 3%)	Fit (model vs. measurement) differences to a weighted sum of pre-calculated differences caused by "unit displacements" of coils	Done • next slides → a few details	JN, Engineers

Align Drift Chambers → improve **tracking** (original misplacements of ~2mm)

Fit residual mean offset patterns Done from "straight-track" data to a weighted sum of pre-calculated offset patterns caused by "unit displacements" of chambers

• nest slides \rightarrow a few details

TH

Location of Measurement Points*

Inner Holes (A): 30 cm From the Center Outer Holes (B, C, and D): 46.5 cm From the Center

3

Joseph Newton's slides from Summer '18 Collaboration Meeting

iviac iviestayer

From the old to the new symmetric map

19/06/19

From the symmetric to the asymmetric

map hi_rec_w Name: f1_w amp 8843.648 12 0.890 mean 0.039 sigma 10 Counts 8 6 2 0 2.5 3.5 1.0 1.5 2.0 3.0 W (GeV) hi_rec_w_phi 3.5_[3.0 5
2.5
9
2.0
1.5 1.0 -100 -50 50 100 150 -150 0 φ (deg)

Track z vertex positions at global x = 0.

* Timothy Hayward's slides from Spring '19 Collaboration Meeting

Fall Alignment Numbers*

run 5297, Fall Alignment Residuals*

From nominal geometry to aligned

Mac Mestayer

11

Vertex analysis after alignment

From Stepan's presentation at CalCom on 3/29:

- After alignment, theta dependence of downstream foil position is reduced
- Phi dependence consistent with sinusoidal wave due to x/y beam offset

Forward Track Resolution: Status

Project	Method	Project Status / Results	Who*
Measure torus B-field → improve model (original disagreements of ~ 2)	Fit (model vs. measurement) differences to a weighted sum of pre-calculated differences caused by "unit displacements" of coils	 Done modify coil shape apply 6 independent coil shifts coil shifts of ~ 1 2 mm → B-field model vs. measurement agrees within ~ 0.4% 	JN, Engineers
Align Drift Chambers → improve tracking (original misplacements of ~2mm)	Fit residual mean offset patterns from "straight-track" data to a weighted sum of pre-calculated offset patterns caused by "unit displacements" of chambers	 Done produce "unit distortion" tables of residual mean offsets vs. layer fit weighted sum to data chamber displacements of ~ 1-2 mm → chambers aligned to 100 µm 	TH

- Thanks to the engineering group and magnet measuring group for design and fabrication of devices
- Thanks to volunteer shift takers for taking the field-map data
- Credit to Joseph Newton and Timothy Hayward for a great job of analyzing the data

Model Optimization Parameters

The four inner coils of the solenoid were individually adjusted axially and radially, and stretched to attempt to optimize agreement with measured data. These parameters were chosen both on the strength of their effect on the field and the comparative ease of modeling them. The complete space of these parameters was searched to locate a global minimum of difference from data, then the values were refined in millimeter steps. Although the result increases agreement, the adjustments necessary represent unrealistic physical dimensions.

Middle Coils:	Stretched axially 20 mm
Innermost Coils:	Radius decreased 25 mm
	Axially translated 7 and 5 mm

Coil	Inner Radius New Old	Outer Radius New Old	Z_1 New Old	Z_2 New Old
$\begin{array}{c c} 1\\ 2\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63.81 70.81 -65.81 -70.81	410.65 417.65 -412.65 -417.65
$\begin{array}{c} 3\\ 4\end{array}$	707.71 707.71 707.71 707.66	$\begin{array}{c c} 580.06 & 580.06 \\ \hline 580.06 & 578.74 \end{array}$	194.89 194.89 -194.89 -194.89	596.37 576.37 -596.37 -576.37
5	-754.287 -754.287	754.287 754.287	900.17 900.17	946.23 946.23

Model Comparison

V. Lagerquist

On Axis:

Off Axis (r=30 mm):

2018 solenoid map versus new from field mapping

Summary

- DC alignment is crucial for forward tracker resolution. Current alignment gives dramatic improvements in removing sector dependencies. Fine tuning may still be possible.
- User of updated torus map based on coil survey is crucial for forward tracks reconstruction. Field mapping analysis confirms the new map gives better consistency with the data. Difference between new symmetric and asymmetric maps is small.
- Solenoid field map measurement indicate significant differences between the data and the original model. New map was generated and tested: effect on reconstructed tracks is small.

Backup

Elastic Peak Shift due to $\Delta \Theta$ or $\delta p/p$

 $E = 6.5 \text{ GeV}, \Theta = 7^{\circ}$

10 mRad shift in Θ → 50 MeV shift in W

1% shift in P → 50 MeV shift in W