TCS with CLAS12 at Jefferson Lab

Pierre Chatagnon and the ee analysis group

Institut de Physique Nucleaire d'Orsay

chatagnon@ipno.in2p3.fr

CLAS Collaboration meeting

June 20, 2019

Overview of this talk

- Current state of the analysis
- New approach to extract TCS cross section
- Proton efficiency in the central detector

Timelike Compton Scattering

 $\begin{array}{c} \textbf{Compton Form Factors} \\ \mathcal{H} = \sum_{q} e_{q}^{2} \left\{ \mathcal{P} \int_{-1}^{1} dx \mathcal{H}^{q}(x,\xi,t) \left[\frac{1}{\xi-x} - \frac{1}{\xi+x} \right] + i\pi \left[\mathcal{H}^{q}(\xi,\xi,t) - \mathcal{H}^{q}(-\xi,\xi,t) \right] \right\} \end{array}$

Imaginary part

• Measured in DVCS asymmetries

Real part

- Accessible in DVCS cross section
- Accessible in TCS in cross section angular modulation

Pierre Chatagnon and the ee analysis group (IPNO)

Data analysis

$$ep
ightarrow (e)\gamma p'
ightarrow (e)\gamma^* p'
ightarrow (e)e^+e^-p'$$

Final state

- Use the CLAS12 EB
- Events with e^+e^-pX selected

Incoming photon

- Make sure the photon is quasi-real
- Cuts on $Xp \rightarrow e^+e^-p$ missing mass

Scattered electron

- Additional cuts on scattered electron
- Look at $ep \rightarrow e^+e^-pX$ system

Lepton-pair spectrum shown at DNP 2018

Part I New Algorithm to extract TCS observables

$\gamma p \rightarrow e^+ e^- p$ kinematics

$$\begin{aligned} Q'^2 &= (k+k')^2 \qquad t = (p'-p)^2 \\ L &= \frac{(Q'^2-t)^2 - b^2}{4} \qquad L_0 = \frac{Q'^4 sin^2 \theta}{4} \qquad b = 2(k-k')(p-p') \\ \tau &= \frac{Q'^2}{2p \cdot q} \qquad s = (p+q)^2 \qquad t_0 = -\frac{4\xi^2 M^2}{(1-\xi^2)} \end{aligned}$$

R ratio calculation

Experimental cross section ratio

0.22

0.18

0.16

0.14

0.08 0.06 0.04 0.02

Problems with this observable

- Acceptance limits change the final value of the ratio
- $\bullet\,$ Acceptance in both torus field is different $\rightarrow\,$ difficulties of combining them

 \rightarrow R. Paremuzyan developed a method that would cancel this acceptance limits dependance

Theta dependance of the interference term is trivial :

$$\frac{dS_{Tot}}{dQ'^2 dt d\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{d\sigma}{dQ'^2 dt d(\cos(\theta)) d\phi} \cdot \frac{L}{L_0} = S_{\rm BH} + S_{Int} = S_{BH} + A \cdot ReM^{--} \cdot \cos(\phi)$$

$$A = \int_{\pi/4}^{3\pi/4} d\theta \cdot a = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \int_{\pi/4}^{3\pi/4} (1+\cos^2(\theta)) d\theta$$

$${}^{B}_{A}S_{Int} = {}^{b}_{a} S_{Int} \frac{\int_{A}^{B} (1 + \cos^{2}(\theta)) d\theta}{\int_{a}^{b} (1 + \cos^{2}(\theta)) d\theta}$$

Where A and B do not depend on Φ

Implementation (1)

- Events generated with R. Paremuzyan generator
- \bullet Weighted with BH/TCS*(L/L0) interference term only
- Acceptance limits estimated using full chain simulation

BH/INT*(L/L0) weighted events (acceptance limits in black)

Integrated number of events in acceptance limit within $40 deg < \theta < 140 deg$ extrapolated.

Implementation (2)

Need to develop a strategy to subtract the BH contribution

Part II Proton efficiency in the CD

Proton efficiency in the central detector

Reconstructed kinematics from simulation (BH + Interference BH/TCS) $(-t < 0.8 \ GeV^2$ and $Q'^2 > 3 \ GeV^2)$

 \rightarrow Most protons are in the central detector

Study of proton efficiency in the CD from data and MC \rightarrow Look at $ep \rightarrow e(p)\pi^+\pi^-$ and $ep \rightarrow ep\pi^+\pi^-$

Efficiency =
$$\frac{ep \rightarrow ep \pi^+ \pi^-}{ep \rightarrow e(p) \pi^+ \pi^-}$$

Event selection

Use electron skim files for run 5532, 5533, 5534 (negative outbending) Applied cuts :

- $\bullet\,$ Electron, Pions in FD, Pions momentum $>\!\!1$ GeV, Pions chi2 within -4 and 4
- Missing proton within 40 deg. and 65 deg.
- Missing mass proton within 0.6 GeV and 1.2 GeV

Missing proton

Detected proton

Requires detected proton in the CD

45 deg. $< \theta <$ 60 deg. all cuts

Efficiencies

Integrated efficiencies

Pierre Chatagnon and the ee analysis group (IPNO)

TCS with CLAS12 at JLab

Simulation

• Using genev generator used in CLAS analysis, ρ^0 channel used Reconstructed invariant mass $\pi^+\pi^-$

Data

Simulation

GEMC 4.3.0, coatjava 5b76 (not the latest, but the same as for the data)
Apply same cuts as data (this requires more study)

Efficiencies comparison

MC efficiency

Data efficiency

Resolutions

Data

Outlook on proton CD efficiency

- Efficiency of the CD for proton has been estimated for data and simulation.
- Need to study systematics (proton missing mass cut in particular)
- Efficiency correction for the simulation will be produced
- Possibility of using the same data to correct proton momentum after alignment and energy loss correction.

 $\Delta P vs \Phi$

Mean of gaussian fit of each slice

Thank you !

Back up

Simulation exclusivity plots

$\gamma p \rightarrow e^+ e^- p$ kinematics

$$\begin{aligned} Q'^2 &= (k+k')^2 \qquad t = (p'-p)^2 \\ L &= \frac{(Q'^2-t)^2 - b^2}{4} \qquad L_0 = \frac{Q'^4 sin^2 \theta}{4} \qquad b = 2(k-k')(p-p') \\ \tau &= \frac{Q'^2}{2p \cdot q} \qquad s = (p+q)^2 \qquad t_0 = -\frac{4\xi^2 M^2}{(1-\xi^2)} \end{aligned}$$

$\gamma p \rightarrow e^+ e^- p$ Cross section and CFFs

Interference cross section

$$\frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} [\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} Re \ \tilde{M}^{--} + ...]$$

$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

BH cross section

$$\frac{d^4 \sigma_{BH}}{dQ'^2 dt d\Omega} \approx -\frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[(F_1^2 - \frac{t}{4M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + (F_1 + F_2)^2 \right]$$

Weighted cross section ratio

$$R(\sqrt{s}, Q'^{2}, t) = \frac{\int_{0}^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^{2}dtd\phi}}{\int_{0}^{2\pi} d\phi \frac{dS}{dQ'^{2}dtd\phi}} \quad \frac{dS}{dQ'^{2}dtd\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_{0}} \frac{d\sigma}{dQ'^{2}dtd\phi d\theta}$$