$\begin{array}{l} \mbox{Introduction} \\ \gamma p \rightarrow p \eta \mbox{ Cross Section} \\ \gamma p \rightarrow {\cal K}^0 \Sigma^+ \mbox{ Cross Section} \\ \mbox{ Summary} \end{array}$

η cross section measurements with CLAS g12 data

Tianqi Hu

Florida State University, Tallahassee, FL

CLAS Collaboration Meeting

@Thomas Jefferson National Accelerator Facility

06/20/2019

 $\begin{array}{l} \mbox{Introduction} \\ \gamma \rho \rightarrow \rho \eta \mbox{ Cross Section} \\ \gamma \rho \rightarrow {\cal K}^0 \Sigma^+ \mbox{ Cross Section} \\ \mbox{ Summary} \end{array}$

Outline

- Introduction
 - Review of the CLAS g12 Experiments
- **2** $\gamma p \rightarrow p \eta$ Cross Section
 - Corrections and Cuts
 - Background Subtraction
 - Preliminary Results
 - Error Analysis
- **3** $\gamma p \rightarrow K^0 \Sigma^+$ Cross Section
 - Current Progress
- Summary

(< ∃) < ∃)</p>

< 🗇 🕨

Review of the CLAS g12 Experiments

Outline

Introduction

- Review of the CLAS g12 Experiments
- 2) $\gamma p
 ightarrow p\eta$ Cross Section
 - Corrections and Cuts
 - Background Subtraction
 - Preliminary Results
 - Error Analysis
- 3 $\gamma p \rightarrow K^0 \Sigma^+$ Cross Section • Current Progress

4 Summary

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} \mbox{Introduction} \\ \gamma p \rightarrow p \eta \mbox{ Cross Section} \\ \gamma p \rightarrow {\cal K}^0 \Sigma^+ \mbox{ Cross Section} \\ \mbox{ Summary} \end{array}$

Review of the CLAS g12 Experiments

CLAS g12 Experiments

electron energy	5.7 GeV
tagged photon energy	1.1-5.45 GeV
target	liquid hydrogen
target position	-110 < z < -70 cm
target polarization	unpolarized
photon polarization	circular

g12 Run Conditions

Plan: cross section measurements based on the g12 data $\gamma p \rightarrow p\eta, \ \gamma p \rightarrow K^0 \Sigma^+, \ \gamma p \rightarrow p\omega$

イロン 不良 とくほう 不良 とうほ

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Outline

Summary

イロト イポト イヨト イヨト

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Corrections

Why do we need these corrections?

	data	Momte Carlo
Eloss	yes	yes
MomC	no	no
BeamC	no	no
Kfit	yes	yes

- Eloss:particles lose energy when interacting with the detector
- MomC:due to misalignment of the chambers and fluctuations of the B field
- BeamC:caused by the tagger sag
- Kfit:to fulfill energy and momentum conservation

∃ ► < ∃ ►</p>

Do we need all these corrections?

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Pull Distributions of Two-pion Events

-

Tianqi Hu η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Pull Distributions of Three-pion Events

proton (λ)

-

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Cuts

	data & Monte Carlo
confidence level cut	1%
Δeta cut	3σ
vertex cut	-110 < z < -72 cm
forward π^0 cut	$\cos \theta_{\pi^0}$ <0.99
fiducial cut	yes
trigger cut	yes
trigger simulation	only for MC
bad paddle knock out	yes

• Cuts mostly aims at removing background.

All cuts must be equal to data and MC.

Corrections and Cuts

Vertex Distributions

 η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Background Subtraction

Background subtraction is done by using a probability-based method.

- Resonance tends to be kinematically close to resonance, so for background.
- The proportion of the resonance components among the nearest neighbors of one events give the Bayesian probability of this event to be the resonance.
- This Bayesian probability is called the Q-factor.

If we choose *M* different kinematic observables $O_k(k = 1, 2, 3, \dots, M)$ that are normalized by their ranges, the kinematic distance squared between two events that are labeled by *i* and *j* can be defined as

$$d_{ij}^{2} = \sum_{k} (O_{k}^{i} - O_{k}^{j})^{2}$$
(1)

ヘロト ヘアト ヘビト ヘビト

 $\begin{array}{l} \text{Introduction} \\ \gamma \pmb{\rho} \rightarrow \pmb{\rho} \eta \text{ Cross Section} \\ \gamma p \rightarrow K^0 \Sigma^+ \text{ Cross Section} \\ \text{ Summary} \end{array}$

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Background Subtraction

By computing the kinematic distance, we can find *N* events in one kinematic bin that are kinematically closest to a chosen event. These *N* nearest neighbors will be used to fill the $\pi^+\pi^-\pi^0$ invariant mass distribution. Then this mass distribution can be fit by a fit function as the sum of the resonance fit function and the background fit function

$$f(m) = r(m) + b(m) \tag{2}$$

where we denote *m* as the $\pi^+\pi^-\pi^0$ invariant mass for convenience and r(m) and b(m) as the resonance and the background fit functions respectively. The Q-factor of the chosen event is

$$Q = \frac{\int r(m)dm}{N}$$
(3)

イロト イポト イヨト イヨト

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Kinematic Observables

Table: Kinematic Observables

O ^k	range of O ^k
$oldsymbol{cos} heta_\eta^{oldsymbol{CM}}$	2
$\cos heta_{\pi^+\pi^-}^\eta$	2
$\phi^\eta_{\pi^+\pi^-}$	2π
$\phi_\eta^{{\it Lab}}$	2π
W	width of the binning of W
λ	1

イロト イポト イヨト イヨト

3

Background Subtraction

$\pi^+\pi^-\pi^0$ Invariant Mass Distributions

 η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

η Differential Cross Sections

Tianqi Hu η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

η Differential Cross Sections

Tianqi Hu η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Fluctuations at Low Beam Energies

The only energy-dependent normalization factors are the photon flux and the MC efficiency.

$$\frac{d\sigma}{d\Omega} = \frac{N}{\epsilon_{MC} \Phi \rho_{target} \Delta \Omega B r}$$
(4)

3

Preliminary Results

Solution for These Fluctuations

 η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Pull Distribution with g11

Tianqi Hu η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

$d\sigma/dt$ Differential Cross Sections

Tianqi Hu

 η cross section measurements with CLAS g12 data

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Correlation Error of the Background Subtraction

The Q-factor method brings about a statistics-based uncertainty, called the correlation error.

- The more events in one kinematic bin, the smaller correlation error.
- The fewer events, the more repetitive nearest neighbors are used and the bigger correlation error there is.

This error is formulated as

$$\sigma_{corr}^2 = \sum_{i,j} \sigma_Q^i \rho_{ij} \sigma_Q^j \tag{6}$$

Then the total statistics-based uncertainty will be

$$\sigma^2 = \sigma_{corr}^2 + \sigma_{stat}^2 \tag{7}$$

ヘロン 人間 とくほ とくほ とう

Corrections and Cuts Background Subtraction Preliminary Results Error Analysis

Correlation Error Band

Tianqi Hu η cross section measurements with CLAS g12 data

Current Progress

Outline

• Current Progress

Summary

→ E → < E →</p>

< 🗇 🕨

Current Progress

$\gamma p \rightarrow K^0 \Sigma^+$ Cross Section

Outline

4 Summary

→ E → < E →</p>

< 🗇 🕨

Summary

In this talk, we've mainly shown our η cross section measurement, which includes:

- Corrections and Cuts
- Background Subtraction
- Preliminary Results
- Error Analysis

Our plan of g12 cross section analysis:

- $\gamma p \rightarrow p \eta$ Cross Section(to be concluded)
- $\gamma p \rightarrow K^0 \Sigma^+$ Cross Section
- $\gamma p \rightarrow p \omega$ Cross Section
- $\gamma p \rightarrow p \phi$ Cross Section

(4) 日本(4) 日本(日本)